
文件系统设计

1．目的和要求

本实验的目的是通过一个简单多用户文件系统的设计，加深理解文件系统的内部功能

和内部实现。

2．实验内容

为 DOS 系统设计一个简单的二级文件系统。要求做到以下几点：

①可以实现下列几条命令

LOGIN 用户登陆

DIR 列文件目录

CREATE 创建文件

DELETE 删除文件

OPEN 打开文件

CLOSE 关闭文件

READ 读文件

WRITE 写文件

②列目录时要列出文件名，物理地址，保护码和文件长度。

③源文件可以进行读写保护。

3．实验环境

操作系统：WINDOWS XP

编译软件：WINTC

4．程序设计

（1）实验提示

①本文件系统采用两级目录，其中第一级对应于用户账号，第二级对应于用户账号下

的文件。

②首先应确定文件系统的数据结构：主目录、子目录及活动文件等。主目录和子目录

都以文件的形式存放于磁盘，这样便于查找和修改。

③用户创建的文件，可以编号存储于磁盘上。如：file0,file1,file2…并以编号作为

物理地址，在目录中进行登记。

（2）主要数据结构

a) OSFILE结点

typedef struct /*the structure of OSFILE*/

 {int fpaddr; /*file physical address*/

 int flength; /*file length*/

 int fmode; /*file mode:0-Read Only;1-Write Only;2-Read and

Write(default);*/

 char fname[MAXNAME]; /*file name*/

 } OSFILE;

b) OSUFD 结点

typedef struct /*the structure of OSUFD*/

 { char ufdname[MAXNAME]; /*ufd name*/

 OSFILE ufdfile[MAXCHILD]; /*ufd own file*/

 }OSUFD;

c) 用户密码

typedef struct /*the structure of OSUFD'LOGIN*/

 {char ufdname[MAXNAME]; /*ufd name*/

 char ufdpword[8]; /*ufd password*/

 } OSUFD_LOGIN;

d) 文件打开模式

typedef struct /*file open mode*/

 {int ifopen; /*ifopen:0-close,1-open*/

 int openmode; /*0-read only,1-write only,2-read and write,3-initial*/

 }OSUFD_OPENMODE;

e) i结点

struct dinode

{

 unsigned short di_number; /*关联文件数*/

 unsigned short di_mode; /*存取权限*/

 unsigned short di_uid;

 unsigned short di_gid;

unsigned long di_size; /*文件大小*/

unsigned int di_addr[NADDR]; /*物理块号*/

（3）主要函数

 a) 登陆文件系统函数LoginF()

 b) 目录操作函数DirF()

 c) 改变当前目录函数CdF()

 d) 创建文件函数CreateF()

 e) 删除文件函数DeleteF()

f) 修改文件权限函数ModifyFM()

 g) 打开文件函数OpenF()

 h) 关闭文件函数CloseF()

 i) 读文件函数ReadF()

 j) 写文件函数WriteF()

 k) 退出文件系统函数QuitF()

 l) 帮助函数help();

5. 源代码

参考程序见下（本程序需要在 c:下建一个名为 osfile的目录及一个名为 file的子目

录）：

#include "stdio.h"

#include "string.h"

#include "conio.h"

#include "stdlib.h"

#define MAXNAME 25 /*the largest length of mfdname,ufdname,filename*/

#define MAXCHILD 50 /*the largest child*/

#define MAX (MAXCHILD*MAXCHILD) /*the size of fpaddrno*/

typedef struct /*the structure of OSFILE*/

 {int fpaddr; /*file physical address*/

 int flength; /*file length*/

 int fmode; /*file mode:0-Read Only;1-Write Only;2-Read and

Write(default);*/

 char fname[MAXNAME]; /*file name*/

 } OSFILE;

typedef struct /*the structure of OSUFD*/

 {char ufdname[MAXNAME]; /*ufd name*/

 OSFILE ufdfile[MAXCHILD]; /*ufd own file*/

 }OSUFD;

typedef struct /*the structure of OSUFD'LOGIN*/

 {char ufdname[MAXNAME]; /*ufd name*/

 char ufdpword[8]; /*ufd password*/

 } OSUFD_LOGIN;

typedef struct /*file open mode*/

 {int ifopen; /*ifopen:0-close,1-open*/

 int openmode; /*0-read only,1-write only,2-read and write,3-initial*/

 }OSUFD_OPENMODE;

OSUFD *ufd[MAXCHILD]; /*ufd and ufd own files*/

OSUFD_LOGIN ufd_lp;

int ucount=0; /*the count of mfd's ufds*/

int fcount[MAXCHILD]; /*the count of ufd's files*/

int loginsuc=0; /*whether login successfully*/

char username[MAXNAME]; /*record login user's name22*/

char dirname[MAXNAME];/*record current directory*/

int fpaddrno[MAX]; /*record file physical address num*/

OSUFD_OPENMODE ifopen[MAXCHILD][MAXCHILD]; /*record file open/close*/

int wgetchar; /*whether getchar()*/

FILE *fp_mfd,*fp_ufd,*fp_file_p,*fp_file;

void main()

{int i,j,choice1;

 char choice[50];

/*choice operation:dir,create,open,delete,modify,read,write*/

 int choiceend=1; /*whether choice end*/

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 void LoginF(); /*LOGIN FileSystem*/

 void DirF(); /*Dir FileSystem*/

 void CdF(); /*Change Dir*/

 void CreateF(); /*Create File*/

 void DeleteF(); /*Delete File*/

 void ModifyFM(); /*Modify FileMode*/

 void OpenF(); /*Open File*/

 void CloseF(); /*Close File*/

 void ReadF(); /*Read File*/

 void WriteF(); /*Write File*/

 void QuitF(); /*Quit FileSystem*/

 void help();

 if((fp_mfd=fopen("c:\\osfile\\mfd","rb"))==NULL)

 {fp_mfd=fopen("c:\\osfile\\mfd","wb");

 fclose(fp_mfd);

 }

 for(i=0;i<MAX;i++) fpaddrno[i]=0;

 textattr(BLACK*16|WHITE);

 clrscr(); /*clear screen*/

 LoginF(); /*user login*/

 clrscr();

 if(loginsuc==1) /*Login Successfully*/

 {while (1)

 {wgetchar=0;

 if (choiceend==1)

 {printf("\n\nC:\\%s>",strupr(dirname));}

 else printf("Bad command or file name.\nC:\\%s>",strupr(username));

 gets(choice);

 strcpy(choice,ltrim(rtrim(strlwr(choice))));

 if (strcmp(choice,"dir")==0) choice1=1;

 else if(strcmp(choice,"creat")==0) choice1=2;

 else if(strcmp(choice,"delete")==0) choice1=3;

 else if(strcmp(choice,"attrib")==0) choice1=4;

 else if(strcmp(choice,"open")==0) choice1=5;

 else if(strcmp(choice,"close")==0) choice1=6;

 else if(strcmp(choice,"read")==0) choice1=7;

 else if(strcmp(choice,"modify")==0) choice1=8;

 else if(strcmp(choice,"exit")==0) choice1=9;

 else if(strcmp(choice,"cls")==0) choice1=10;

 else if(strcmp(choice,"cd")==0) choice1=11;

 else if(strcmp(choice,"help")==0) choice1=20;

 else choice1=12;

 switch(choice1)

 {case 1:DirF();choiceend=1;break;

 case 2:CreateF();choiceend=1;if(!wgetchar) getchar();break;

 case 3:DeleteF();choiceend=1;if(!wgetchar)getchar();break;

 case 4:ModifyFM();choiceend=1;if(!wgetchar) getchar();break;

 case 5:choiceend=1;OpenF();if (!wgetchar) getchar();break;

 case 6:choiceend=1;CloseF();if (!wgetchar) getchar();break;

 case 7:choiceend=1;ReadF();if (!wgetchar) getchar();break;

 case 8:choiceend=1;WriteF();if (!wgetchar) getchar();break;

 case 9:printf("\nYou have exited this system.");

 QuitF();exit(0);break;

 case 10:choiceend=1;clrscr();break;

 case 11:CdF();choiceend=1;break;

 case 20:help();choiceend=1;break;

 default:choiceend=0;

 }

 }

}

else printf("\nAccess denied.");

}

void help(void)

{

printf("\nThe Command List\n");

printf("\nCd Attrib Creat Modify Read Open Cls Delete Exit Close\n");

}

char *rtrim(char *str) /*remove the trailing blanks.*/

{int n=strlen(str)-1;

 while(n>=0)

 {if(*(str+n)!=' ')

 {*(str+n+1)='\0';

 break;

 }

 else n--;

 }

 if (n<0) str[0]='\0';

 return str;

}

char *ltrim(char *str) /*remove the heading blanks.*/

{char *rtrim(char *str);

 strrev(str);

 rtrim(str);

 strrev(str);

 return str;

}

void LoginF() /*LOGIN FileSystem*/

{char loginame[MAXNAME],loginpw[9],logincpw[9],str[50];

 int i,j,flag=1;

 char a[25];

 int findout; /*login user not exist*/

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 void InputPW(char *password); /*input password,use '*' replace*/

 void SetPANo(int RorW); /*Set physical address num*/

 while(1)

 {findout=0;

 printf("\n\nLogin Name:");

 gets(loginame);

 ltrim(rtrim(loginame));

 fp_mfd=fopen("c:\\osfile\\","rb");

 for(i=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;i++)

 if (strcmp(strupr(ufd_lp.ufdname),strupr(loginame))==0)

 {findout=1;

 strcpy(logincpw,ufd_lp.ufdpword);

 }

 fclose(fp_mfd);

 if (findout==1) /*user exist*/

 {printf("Login Password:");

 InputPW(loginpw); /*input password,use '*' replace*/

 if (strcmp(loginpw,logincpw)==0)

 {strcpy(username,strupr(loginame));

 strcpy(dirname,username);

 fp_mfd=fopen("c:\\osfile\\","rb");

 for(j=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;j++)

 {strcpy(str,"c:\\osfile\\");

 strcat(str,ufd_lp.ufdname);

 ufd[j]=(OSUFD*)malloc(sizeof(OSUFD));

 strcpy(ufd[j]->ufdname,strupr(ufd_lp.ufdname));

 fp_ufd=fopen(str,"rb");

 fcount[j]=0;

for(i=0;fread(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd)!=0;i++,fcount[j]++)

 {ifopen[j][i].ifopen=0;

 ifopen[j][i].openmode=4;}

 fclose(fp_ufd);}

 fclose(fp_mfd);

 ucount=j;

 SetPANo(0);

 printf("\n\nLogin successful! Welcome to this FileSystem\n\n");

 loginsuc=1;

 return;}

 else

 {printf("\n\n");

 flag=1;

 while(flag)

 {printf("Login Failed! Password Error. Try Again(Y/N):");

 gets(a);

 ltrim(rtrim(a));

 if (strcmp(strupr(a),"Y")==0) {loginsuc=0;flag=0;}

 else if(strcmp(strupr(a),"N")==0){loginsuc=0;flag=0;return;}

 }

 }

 }

 else

 {printf("New Password(<=8):");

 InputPW(loginpw); /*input new password,use '*' replace*/

 printf("\nConfirm Password(<=8):"); /*input new password,use '*' replace*/

 InputPW(logincpw);

 if (strcmp(loginpw,logincpw)==0)

 {strcpy(ufd_lp.ufdname,strupr(loginame));

 strcpy(ufd_lp.ufdpword,loginpw);

 fp_mfd=fopen("c:\\osfile\\","ab");

 fwrite(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd);

 fclose(fp_mfd);

 strcpy(username,strupr(loginame));

 strcpy(dirname,loginame);

 strcpy(str,"c:\\osfile\\");

 strcat(str,username);

 if((fp_ufd=fopen(str,"rb"))==NULL)

 {fp_ufd=fopen(str,"wb");

 fclose(fp_ufd);

 }

 fp_mfd=fopen("c:\\osfile\\","rb");

 for(j=0;fread(&ufd_lp,sizeof(OSUFD_LOGIN),1,fp_mfd)!=0;j++)

 {strcpy(str,"c:\\osfile\\");

 strcat(str,ufd_lp.ufdname);

 ufd[j]=(OSUFD*)malloc(sizeof(OSUFD));

 strcpy(ufd[j]->ufdname,strupr(ufd_lp.ufdname));

 fp_ufd=fopen(str,"rb");

for(i=0;fread(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd)!=0;i++,fcount[j]++)

 {ifopen[j][i].ifopen=0;

 ifopen[j][i].openmode=4;}

 fclose(fp_ufd);}

 fclose(fp_mfd);

 ucount=j;

 SetPANo(0);

 printf("\n\nLogin Successful! Welcome to this System\n\n");

 loginsuc=1;

 return;

 }

 else

 {printf("\n\n");

 flag=1;

 while(flag)

 {printf("Login Failed! Password Error. Try Again(Y/N):");

 gets(a);

 ltrim(rtrim(a));

 if (strcmp(strupr(a),"Y")==0) {loginsuc=0;flag=0;}

 else if(strcmp(strupr(a),"N")==0){loginsuc=0;flag=0;return;}

 }

 }

 }

 }

 }

void SetPANo(int RorW) /*Set physical address num,0-read,1-write*/

{int i,j;

 if (RorW==0)

 {if((fp_file_p=fopen("c:\\osfile\\file\\file_p","rb"))==NULL)

 {fp_file_p=fopen("c:\\osfile\\file\\file_p","wb");

 fclose(fp_file_p);

 }

 fp_file_p=fopen("c:\\osfile\\file\\file_p","rb");

 for(i=0;fread(&j,sizeof(int),1,fp_file_p)!=0;i++)

 fpaddrno[j]=1;

 /*for(i=1;i<MAX;i++)

 if ((i%13)==0) fpaddrno[i]=1;*/

 }

 else

 {fp_file_p=fopen("c:\\osfile\\file\\file_p","wb");

 /*for(i=1;i<MAX;i++)

 if((i%13)==0) fpaddrno[i]=0;*/

 for(i=0;i<MAX;i++)

 if (fpaddrno[i]==1)

 fwrite(&i,sizeof(int),1,fp_file_p);

 }

 fclose(fp_file_p);

}

void InputPW(char *password) /*input password,use '*' replace*/

{int j;

 for(j=0;j<=7;j++)

 {password[j]=getch();

 if ((int)(password[j])!=13)

 {if((int)(password[j])!=8)

 putchar('*');

 else

 {if (j>0)

 {j--;j--;

 putchar('\b');putchar(' ');putchar('\b');

 }

 else j--;

 }

 }

 else

 {password[j]='\0';

 break;

 }

 }

 password[j]='\0';

}

void DirF() /*Dir FileSystem*/

{int i,j,count=0;

 char sfmode[25],sfpaddr[25],str[25];

 int ExistD(char *dirname); /*Whether DirName Exist,Exist-i,Not Exist-0*/

 clrscr();

 if (strcmp(strupr(ltrim(rtrim(dirname))),"")!=0)

 {printf("\n\nC:\\%s>dir\n",dirname);

printf("\n%14s%16s%14s%10s%18s\n","FileName","FileAddress","FileLength","Type",

"FileMode");

 j=ExistD(dirname);

 for(i=0;i<fcount[j];i++)

 {if ((i%16==0)&&(i!=0))

 {printf("\nPress any key to continue..");

 getch();

 clrscr();

printf("\n%14s%16s%14s%10s%18s\n","FileName","FileAddress","FileLength","Type",

"FileMode");

 }

 itoa(ufd[j]->ufdfile[i].fpaddr,str,10);

 strcpy(sfpaddr,"file");

 strcat(sfpaddr,str);

 if (ufd[j]->ufdfile[i].fmode==0) strcpy(sfmode,"Read Only");

 else if(ufd[j]->ufdfile[i].fmode==1) strcpy(sfmode,"Write Only");

 else if(ufd[j]->ufdfile[i].fmode==2)strcpy(sfmode,"Read And Write");

 else strcpy(sfmode,"Protect");

 printf("%14s%16s%14d%10s%18s\n",ufd[j]->ufdfile[i].fname,sfpaddr,ufd[j]->uf

dfile[i].flength,"<FILE>",sfmode);

 }

 printf("\n %3d file(s)\n",fcount[j]);}

 else

 {printf("\n\nC:\\>dir\n");

 printf("\n%14s%18s%8s\n","DirName","OwnFileCount","Type");

 for(i=0;i<ucount;i++)

 {if ((i%16==0)&&(i!=0))

 {printf("\nPress any key to continue...");

 getch();

 clrscr();

 printf("\n%14s%18s%8s\n","DirName","OwnFileCount","Type");

 }

 printf("%14s%18d%8s\n",ufd[i]->ufdname,fcount[i],"<UFD>");

 count=count+fcount[i];

 }

 printf("\n %3d dir(s),%5d file(s)\n",ucount,count);

 }

}

int ExistD(char *dirname) /*Whether DirName Exist,Exist-i,Not Exist-0*/

{int i;

 int exist=0;

 for(i=0;i<ucount;i++)

 if (strcmp(strupr(ufd[i]->ufdname),strupr(dirname))==0)

 {exist=1;

 break;

 }

 if (exist) return(i);

 else return(-1);

}

void CdF() /*Exchange Dir*/

{char dname[MAXNAME];

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistD(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 printf("\nPlease input DirName (cd..-Previous dir; DirNAME-cd [DirNAME]):");

 gets(dname);

 ltrim(rtrim(dname));

 if (ExistD(dname)>=0) strcpy(dirname,strupr(dname));

 else if(strcmp(strupr(dname),"CD..")==0) strcpy(ltrim(rtrim(dirname)),"");

 else printf("\nError.\'%s\' does not exist.\n",dname);

}

void CreateF() /*Create File*/

{int fpaddrno,flag=1,i;

 char fname[MAXNAME],str[50],str1[50],strtext[255],a[25];

 char fmode[25];

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int FindPANo(); /*find out physical address num*/

 int WriteF1(); /*write file*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(dirname),strupr(username))!=0)

 {printf("\nError. You must create file in your own dir.\n");wgetchar=1;}

 else

 {

 printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 if (ExistF(fname)>=0)

 {printf("\nError. Name \'%s\' has already existed.\n",fname);

 wgetchar=1;

 }

 else

 {printf("Please input FileMode(0-Read Only, 1-Write Only, 2-Read and Write,

3-Protect):");

 gets(fmode);

 ltrim(rtrim(fmode));

 if((strcmp(fmode,"0")==0)||(strcmp(fmode,"1")==0)||(strcmp(fmode,"2")==0)||

(strcmp(fmode,"3")==0))

 {fpaddrno=FindPANo();

 if (fpaddrno>=0)

 {i=ExistD(username);

 strcpy(ufd[i]->ufdfile[fcount[i]].fname,fname);

 ufd[i]->ufdfile[fcount[i]].fpaddr=fpaddrno;

 ufd[i]->ufdfile[fcount[i]].fmode=atoi(fmode);

 ifopen[i][fcount[i]].ifopen=0;

 ifopen[i][fcount[i]].openmode=4;

 strcpy(str,"c:\\osfile\\file\\file");

 itoa(fpaddrno,str1,10);

 strcat(str,str1);

 fp_file=fopen(str,"wb");

 fclose(fp_file);

 fcount[i]++;

 while(flag)

 {printf("Input text now(Y/N):");

 gets(a);

 ltrim(rtrim(a));

 ufd[i]->ufdfile[fcount[i]-1].flength=0;

 if(strcmp(strupr(a),"Y")==0)

 {fp_file=fopen(str,"wb+");

 ufd[i]->ufdfile[fcount[i]-1].flength=WriteF1();

 flag=0;

 }

 else if(strcmp(strupr(a),"N")==0){flag=0;wgetchar=1;}

 }

 printf("\n\'%s\' has been created successfully!\n",fname);

 }

 else

 {printf("\nFail!No Disk Space. Please format your disk.\n");wgetchar=1;}

 }

 else {printf("\nError. FileMode\'s Range is 0-3\n");wgetchar=1;}

 }}

}

int ExistF(char *filename) /*Whether FileName Exist,Exist-i,Not Exist-0*/

{int i,j;

 int exist=0;

 int ExistD(char *dirname);

 j=ExistD(dirname);

 for(i=0;i<fcount[j];i++)

 if (strcmp(strupr(ufd[j]->ufdfile[i].fname),strupr(filename))==0)

 {exist=1;

 break;

 }

 if (exist) return(i);

 else return(-1);

}

int FindPANo() /*find out physical address num*/

{int i;

 for(i=0;i<MAX;i++)

 if (fpaddrno[i]==0) {fpaddrno[i]=1;break;}

 if (i<MAX) return(i);

 else return(-1);

}

int WriteF1() /*write file*/

{int length=0;

 char c;

 printf("Please input text(\'#\' stands for end):\n");

 while((c=getchar())!='#')

 {fprintf(fp_file,"%c",c);

 if (c!='\n') length++;

 }

 fprintf(fp_file,"\n");

 fclose(fp_file);

 return(length);

}

void DeleteF() /*Delete File*/

{char fname[MAXNAME];

 char str[50],str1[50];

 int i,j,k,flag=1;

 char a[25]; /*whether delete*/

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(dirname),strupr(username))!=0)

 {printf("\nError. You can only delete file in your own dir.\n");wgetchar=1;}

 else

 {printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if (i>=0)

 {k=ExistD(username);

 if(ifopen[k][i].ifopen==1)

 {printf("\nError. \'%s\' is in open status. Close it before

delete.\n",fname);wgetchar=1;}

 else

 {

 while(flag)

 {printf("\'%s\' will be deleted. Are you sure(Y/N):",fname);

 gets(a);

 ltrim(rtrim(a));

 if(strcmp(strupr(a),"Y")==0)

 {fpaddrno[ufd[k]->ufdfile[i].fpaddr]=0;

 itoa(ufd[k]->ufdfile[i].fpaddr,str,10);

 for(j=i;j<fcount[k]-1;j++)

 {strcpy(ufd[k]->ufdfile[j].fname,ufd[k]->ufdfile[j+1].fname);

 ufd[k]->ufdfile[j].fpaddr=ufd[k]->ufdfile[j+1].fpaddr;

 ufd[k]->ufdfile[j].flength=ufd[k]->ufdfile[j+1].flength;

 ufd[k]->ufdfile[j].fmode=ufd[k]->ufdfile[j+1].fmode;

 ifopen[k][j]=ifopen[k][j+1];

 }

 fcount[k]--;

 strcpy(str1,"c:\\osfile\\file\\file");

 strcat(str1,str);

 remove(str1);

 flag=0;

 printf("\n\'%s\' has been deleted successfully.\n",fname);

 wgetchar=1;

 }

 else if(strcmp(strupr(a),"N")==0)

 {printf("\nError. \'%s\' hasn\'t been deleted.\n",fname);

 wgetchar=1;

 flag=0;}

 }}}

 else

 {printf("\nError. \'%s\' does not exist.\n",fname);wgetchar=1;}}

}

void ModifyFM() /*Modify FileMode*/

{char fname[MAXNAME],str[50];

 int i,j,k,flag;

 char fmode[25]; /*whether delete*/

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 void InputPW(char *password); /*input password,use '*' replace*/

 void SetPANo(int RorW); /*Set physical address num*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(dirname),strupr(username))!=0) {printf("\nError.You can only

modify filemode in yourself dir.\n");wgetchar=1;}

 else

{ printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if (i>=0)

 {k=ExistD(username);

 if(ifopen[k][i].ifopen==1)

 {printf("\nError.\'%s\' is in open status. Close it before

modify.\n",fname);wgetchar=1;}

 else

 {

 if(ufd[k]->ufdfile[i].fmode==0) strcpy(str,"read only"); /*FileMode*/

 else if(ufd[k]->ufdfile[i].fmode==1) strcpy(str,"write only");

 else if(ufd[k]->ufdfile[i].fmode==2) strcpy(str,"read and write");

 else strcpy(str,"Protect");

 printf("\'%s\' filemode is %s.\n",fname,strupr(str));

 printf("Modify to(0-read only,1-write only,2-read and write,3-Protect):");

 gets(fmode);

 ltrim(rtrim(fmode));

 if(strcmp(fmode,"0")==0)

 {ufd[k]->ufdfile[i].fmode=0;

 printf("\n\'%s\' has been modified to READ ONLY mode successfully.\n",fname);

 wgetchar=1;

 }

 else if(strcmp(fmode,"1")==0)

 {ufd[k]->ufdfile[i].fmode=1;

 printf("\n\'%s\' has been modified to WRITE ONLY mode successfully.\n",fname);

 wgetchar=1;

 }

 else if(strcmp(fmode,"2")==0)

 {ufd[k]->ufdfile[i].fmode=2;

 printf("\n\'%s\' has been modified to READ AND WRITE mode

successfully.\n",fname);

 wgetchar=1;

 }

 else if(strcmp(fmode,"3")==0)

 {ufd[k]->ufdfile[i].fmode=3;

 printf("\n\'%s\' has been modified to FORBID mode successfully.\n",fname);

 wgetchar=1;

 }

 else {printf("\nError.\'%s\' is not modified.\n",fname);wgetchar=1;}

 }

 }

 else

 {printf("\nError. \'%s\' dose not exist.\n",fname);wgetchar=1;}}

}

void OpenF() /*Open File*/

{char fname[MAXNAME];

 char str[25],str1[25],fmode[25];

 int i,k;

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(ltrim(rtrim(dirname))),"")==0)

 {printf("\nError. Please change to ufd dir before open.\n");wgetchar=1;return;}

 printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if (i>=0)

 {k=ExistD(dirname);

 if(!ifopen[k][i].ifopen)

 {if (ufd[k]->ufdfile[i].fmode==3)

 {printf("\nError. The file\'s mode is FORBID. Can not open.\n");wgetchar=1;}

 else

 {printf("Please input FileOpenMode(0-Read Only,1-Write Only,2-Read and

Write):");

 gets(fmode);

 ltrim(rtrim(fmode));

 if((strcmp(fmode,"0")==0)||(strcmp(fmode,"1")==0)||(strcmp(fmode,"2")==0))

 {if(fmode[0]=='0') /*open file with read only mode*/

 {strcpy(str,"read only");

 if((ufd[k]->ufdfile[i].fmode==0)||(ufd[k]->ufdfile[i].fmode==2))

ifopen[k][i].ifopen=1;

 }

 else if(fmode[0]=='1') /*open file with write only mode*/

 {strcpy(str,"write only");

 if((ufd[k]->ufdfile[i].fmode==1)||(ufd[k]->ufdfile[i].fmode==2))

ifopen[k][i].ifopen=1;

 }

 else if(fmode[0]=='2') /*open file with read and write mode*/

 {strcpy(str,"read and write");

 if(ufd[k]->ufdfile[i].fmode==2) ifopen[k][i].ifopen=1;

 }

 if(ufd[k]->ufdfile[i].fmode==0) strcpy(str1,"read only"); /*FileMode*/

 else if(ufd[k]->ufdfile[i].fmode==1) strcpy(str1,"write only");

 else if(ufd[k]->ufdfile[i].fmode==2) strcpy(str1,"read and write");

 if(ifopen[k][i].ifopen==1)

 {ifopen[k][i].openmode=atoi(fmode);

 if (ifopen[k][i].openmode==0) strcpy(str,"read only");

 else if(ifopen[k][i].openmode==1) strcpy(str,"write only");

 else if(ifopen[k][i].openmode==2) strcpy(str,"read and write");

 printf("\n\'%s\' has been opened. OpenMode is %s,FileMode

is %s\n",fname,strupr(str),strupr(str1));

 wgetchar=1;

 }

 else

 {printf("\nError. \'%s\' hasn\'t been opened. OpenMode Error. OpenMode

is %s,but FileMode is %s\n",fname,strupr(str),strupr(str1));wgetchar=1;}

 }

 else {printf("\nError. FileOpenMode\'s Range is 0-2\n");wgetchar=1;}

 }}

 else {printf("\nError. \'%s\' is in open status.\n",fname);wgetchar=1;}

 }

 else

 {printf("\nError. \'%s\' does not exist.\n",fname);wgetchar=1;}

}

void CloseF() /*Close File*/

{int i,k,n=0;

 char fname[MAXNAME];

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(ltrim(rtrim(dirname))),"")==0)

 {printf("\nError. Please convert to ufd dir before close.\n");wgetchar=1;return;}

 k=ExistD(dirname);

 printf("\nOpen File(s) In This Ufd:\n");/*display openned file*/

 for(i=0;i<fcount[k];i++)

 {if (ifopen[k][i].ifopen==1) {printf("%15s",ufd[k]->ufdfile[i].fname);n++;}

 if((n%4==0)&&(n!=0)) printf("\n");

 }

 printf("\n%d files openned.\n",n);

 if (n==0) wgetchar=1;

 if(n!=0)

{printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if(i>=0)

 {if(ifopen[k][i].ifopen==1)

 {ifopen[k][i].ifopen=0;

 ifopen[k][i].openmode=4;

 printf("\n\'%s\' has been closed successfully.\n",fname);

 wgetchar=1;

 }

 else {printf("\nError.\'%s\' is in closing status.\n",fname);wgetchar=1;}

 }

 else {printf("\nError. \'%s\' is not exist.\n",fname);wgetchar=1;}

}

}

void ReadF() /*Read File*/

{int i,k,n=0;

 char fname[MAXNAME];

 char str[255],str1[255],c;

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 if (strcmp(strupr(ltrim(rtrim(dirname))),"")==0) {printf("\nError.Please

convert to ufd dir before read.\n");wgetchar=1;return;}

 printf("\nCaution:Open file first\n");

 printf("Opened File(s) List:\n");

 k=ExistD(dirname);

 for(i=0;i<fcount[k];i++)

 {if (ifopen[k][i].ifopen==1)

 if ((ifopen[k][i].openmode==0) ||(ifopen[k][i].openmode==2))

{printf("%15s",ufd[k]->ufdfile[i].fname);n++;}

 if((n%4==0)&&(n!=0)) printf("\n");

 }

 printf("\n%d files openned.\n",n);

 if (n==0) wgetchar=1;

 if(n!=0)

{printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if(i>=0)

 {if(ifopen[k][i].ifopen==1)

 {if((ifopen[k][i].openmode==0) ||(ifopen[k][i].openmode==2))

 {itoa(ufd[k]->ufdfile[i].fpaddr,str,10);

 strcpy(str1,"file");

 strcat(str1,str);

 strcpy(str,"c:\\osfile\\file\\");

 strcat(str,str1);

 fp_file=fopen(str,"rb");

 fseek(fp_file,0,0);

 printf("\nThe text is:\n\n");

 printf(" ");

 while(fscanf(fp_file,"%c",&c)!=EOF)

 if (c=='\n') printf("\n ");

 else printf("%c",c);

 printf("\n\n%d Length.\n",ufd[k]->ufdfile[i].flength);

 fclose(fp_file);

 wgetchar=1;

 }

 else

 {printf("\nError.\'%s\' has been opened with WRITE ONLY mode. It isn\'t

read.\n",fname);wgetchar=1;}

 }

 else {printf("\nError.\'%s\' is in closing status. Please open it before

read\n",fname);wgetchar=1;}

 }

 else {printf("\nError. \'%s\' does not exist.\n",fname);wgetchar=1;}

}

}

void WriteF() /*Write File*/

{int i,k,n=0;

 char fname[MAXNAME];

 char str[50],str1[50],a[50];

 char *rtrim(char *str); /*remove the trailing blanks.*/

 char *ltrim(char *str); /*remove the heading blanks.*/

 int ExistF(char *filename); /*Whether FileName Exist,Exist-i,Not Exist-0*/

 int ExistD(char *dirname);

 int WriteF1(); /*write file*/

 if (strcmp(strupr(ltrim(rtrim(dirname))),"")==0) {printf("\nError. Please

convert to ufd dir before write.\n");wgetchar=1;return;}

 k=ExistD(dirname);

 printf("\nOpen File(s) with write only mode or read and write mode:\n");/*display

openned files with writable mode*/

 for(i=0;i<fcount[k];i++)

 {if (ifopen[k][i].ifopen==1)

 if ((ifopen[k][i].openmode==1) ||(ifopen[k][i].openmode==2))

{printf("%15s",ufd[k]->ufdfile[i].fname);n++;}

 if((n%4==0)&&(n!=0)) printf("\n");

 }

 printf("\n%d files open.\n",n);

 if (n==0) wgetchar=1;

 if(n!=0)

{printf("\nPlease input FileName:");

 gets(fname);

 ltrim(rtrim(fname));

 i=ExistF(fname);

 if(i>=0)

 {if(ifopen[k][i].ifopen==1)

 {if((ifopen[k][i].openmode==1) ||(ifopen[k][i].openmode==2))

 {itoa(ufd[k]->ufdfile[i].fpaddr,str,10);

 strcpy(str1,"file");

 strcat(str1,str);

 strcpy(str,"c:\\osfile\\file\\");

 strcat(str,str1);

 if (ufd[k]->ufdfile[i].flength!=0)

 {printf("\n\'%s\' has text. Overwrite or Append(O-overwrite,A-Append,else-not

write):",fname);

 gets(a);

 ltrim(rtrim(a));

 if (fp_file!=NULL) fclose(fp_file);

 if (strcmp(strupr(a),"O")==0)

 {printf("\nOverwrite\n");

 fp_file=fopen(str,"wb");

 ufd[k]->ufdfile[i].flength=0;

 ufd[k]->ufdfile[i].flength=WriteF1();

 }

 else if(strcmp(strupr(a),"A")==0)

 {printf("\nAppend\n");

 fp_file=fopen(str,"ab");

 ufd[k]->ufdfile[i].flength=ufd[k]->ufdfile[i].flength+WriteF1();

 }

 else

 {printf("\nError.\'%s\' has not been written.\n",fname);

 fclose(fp_file);

 wgetchar=1;

 }

 }

 else

 {fp_file=fopen(str,"wb");

 ufd[k]->ufdfile[i].flength=WriteF1();

 }

 }

 else

 {printf("\nError. \'%s\' has been opened with read only mode.It isn\'t

writed.\n",fname);wgetchar=1;}

 }

 else

 {printf("\nError. \'%s\' is in closing status. Please open it before

write\n",fname);wgetchar=1;}

 }

 else

 {printf("\nError. \'%s\' does not exist.\n",fname);wgetchar=1;}

}

}

void QuitF() /*Quit FileSystem*/

{int i,j;

 char str[50];

 void SetPANo(int RorW); /*Set physical address num,0-read,1-write*/

 SetPANo(1);

 if (fp_mfd!=NULL) fclose(fp_mfd);

 if (fp_ufd!=NULL) fclose(fp_ufd);

 if (fp_file!=NULL) fclose(fp_file);

 for(j=0;j<ucount;j++)

{strcpy(str,"c:\\osfile\\");

 strcat(str,ufd[j]->ufdname);

 ltrim(rtrim(str));

 fp_ufd=fopen(str,"wb");

 fclose(fp_ufd);

 fp_ufd=fopen(str,"ab");

 for(i=0;i<fcount[j];i++)

 fwrite(&ufd[j]->ufdfile[i],sizeof(OSFILE),1,fp_ufd);

 fclose(fp_ufd);}

}

6．实验运行结果

（1）登陆界面，见图 1

图 1 登陆界面

（2）创建文件界面，见图 2

图 2 创建文件界面

（3）删除文件界面，见图 3

图 3 删除文件界面

（4）打开文件界面，见图 4

图 4 打开文件界面

（5）修改文件界面，见图 5

图 5 修改文件界面

（6）读文件界面，见图 6

图 6 读文件界面

7. 心得体会

