XHREG VT
1. HEMER
ARSI R H A — AR R P SO R SR, IR BRSO R G R N TR
AP B

2. SKHAR
9 DOS R4 et — MM 0 R BREI LT ILA:

On] PLSEBL R A L5k 4
LOGIN F) #bifi
DIR FSCAE H 3%
CREATE @@L fF
DELETE fhlkxc
OPEN T3
CLOSE XHASCfF
READ B
WRITE 53¢ff

@F H R ZF 4, Prssbdl, CRYESASCK R .

VA AT LAEAT B S R AP

3. LI

¥e/E &Y. WINDOWS XP

iR WINTC

4. FBERF¥GTH
(1) SRR

O RGRAFRHE R, HhBE—RRTHAKS, BogousTHPRS T
¥ A

@1 SE R E A REREIEGE: FHF. FHFIEF S, EHFMTHE
LS SAF T R, X T BB L

@ BIRRISCE, T g 5 A6 T s o . fileO, filel, file2--- I A5 1EN
PIEMhE, 7EH P EI.

(2) FEBRESEH
a) OSFILE &5
typedef struct /*the structure of OSFILE*/
{int fpaddr; /*file physical address*/

int flength; /*file length#*/
int fmode; /*file mode:0-Read Only;1-Write Only;2-Read and
Write (default) ;*/

char fname[MAXNAME] ; /*file name*/
} OSFILE;
b) OSUFD £ 5
typedef struct /*the structure of OSUFD*/

{ char ufdname [MAXNAME]; /*ufd name*/
OSFILE ufdfile[MAXCHILD]; /*ufd own filex/

} OSUFD;
c) FHP#M
typedef struct /*the structure of OSUFD’ LOGIN#*/
{char ufdname [MAXNAME] ; /*ufd name*/
char ufdpword[8]; /*xufd passwordk/

} OSUFD_LOGIN;
d) SCHRFT I

typedef struct /*file open modex/
{int ifopen; /*ifopen:0—-close, 1-openk/
int openmode; /*0-read only, l1-write only, 2-read and write, 3—-initial%/
} OSUFD_OPENMODE;
e) i4im

struct dinode

{

unsigned short di number; JHRFRI S E e/
unsigned short di_mode; /A7 BB/
unsigned short di uid;

unsigned short di gid;

unsigned long di_size; JHAF R AN*/
unsigned int di addr[NADDR]; /PR x/
(3) FERHK

a) B RGA K Logink ()
b) Hx#AMEREDirF ()
c) BT H R R ELCdF ()
d) B RE CreateF ()
e) MR SCAT: R FiDeleteF ()
£) ABECTHAR B Mod i fyFM ()
g) FTFF A % OpenF ()
h) RS R %L CloseF ()
i) R ReadF ()
J) XA ENriteF ()
k) B H S RS EQui tE O
1) #HBk%Ehelp(O;

5. WA

ZERFIT (RREFHELE o PPN osfile WHF L KN file T H

KD:

#tinclude “stdio.h”

#include “string. h”

#tinclude “conio.h”

#tinclude “stdlib.h”

#tdefine MAXNAME 25 /*the largest length of mfdname, ufdname, filename*/
#tdefine MAXCHILD 50 /*the largest child*/

ttdefine MAX (MAXCHILD*MAXCHILD) /#*the size of fpaddrno*/

typedef struct /#*the structure of OSFILE#*/

{int fpaddr; /*file physical address*/

int flength; /*file length*/

int fmode; /*%file mode:0-Read Only;1-Write Only;2-Read and
Write (default) ;*/

char fname [MAXNAME] ; /*file name*/
} OSFILE;
typedef struct /*the structure of OSUFD#*/

{char ufdname[MAXNAME]; /*ufd name%*/
OSFILE ufdfile[MAXCHILD]: /*ufd own filex/
} OSUFD;

typedef struct /#the structure of OSUFD’ LOGIN#*/
{char ufdname [MAXNAME] ; /*ufd name%/
char ufdpword[8]; /*ufd password#/
} OSUFD_LOGIN;

typedef struct /*file open mode*/
{int ifopen; /*ifopen:0-close, 1-openk/
int openmode; /*0-read only, 1-write only, 2-read and write, 3—initial*/

}OSUFD OPENMODE :

OSUFD s*ufd[MAXCHILD]; /#*ufd and ufd own files*/
OSUFD_LOGIN ufd 1p;

int ucount=0; /#*the count of mfd’ s ufds*/

int fcount[MAXCHILD]; /#the count of ufd s files*/

int loginsuc=0; /*whether login successfully*/

char username [MAXNAME]; /#*record login user s name22%/

char dirname[MAXNAME]:/*record current directory*/

int fpaddrno[MAX]; /*record file physical address numsk/
OSUFD_OPENMODE ifopen[MAXCHILD] [MAXCHILD]; /#record file open/closex/
int wgetchar; /#whether getchar ()*/

FILE *fp mfd, *fp ufd, *fp file p,*fp file;

void main ()
{int 1, j, choicel;
char choice[50];
/*choice operation:dir, create, open, delete, modify, read, writex/
int choiceend=1; /#*whether choice end*/
char *rtrim(char *str); /%remove the trailing blanks. %/
char *ltrim(char *str); /%remove the heading blanks. %/
void LoginF(); /*LOGIN FileSystemk/
void DirF(); /*Dir FileSystem*/
void CdF(); /*Change Dir%*/
void CreateF(): /*Create Filek/
void DeleteF(): /#Delete Filex/
void ModifyFM() ; /*Modify FileMode*/
void OpenF(); /*Open Filex/
void CloseF(); /#Close Filex/
void ReadF(); /*Read Filex/
void WriteF(); /*Write File%/
void QuitF(); /#Quit FileSystem*/
void help();
if ((fp mfd=fopen (“c:\\osfile\\mfd”, “rb”))==NULL)
{fp mfd=fopen (“c:\\osfile\\mfd”, "wh”) ;
fclose (fp mfd) ;
1

for (i=0;i<MAX;i++) fpaddrnoli]=0;
textattr (BLACK*16|WHITE) ;
clrser(); /*clear screenk/
LoginF(); /*user login*/

clrser();

if (loginsuc==1) /*Login Successfully*/
{while (1)
{wgetchar=0;
if (choiceend==1)
{printf ("\n\nC:\\%s>”, strupr (dirname)) ;}
else printf("Bad command or file name. \nC:\\%s>”, strupr (username)) ;
gets (choice) ;
strepy (choice, 1trim(rtrim(strlwr (choice)))) ;
if (strcmp(choice, “dir”)==0) choicel=1;
else if(strcmp(choice, “creat”)==0) choicel=2;
else if(strcmp(choice, “delete”)==0) choicel=3;

else if(strcmp(choice, “attrib”)==0) choicel=4;

else if(strcmp(choice, “open”)==0) choicel=b;
else if(strcmp(choice, “close”)==0) choicel=6;
else if(strcmp(choice, “read”)==0) choicel=7;
else if(strcmp(choice, “modify”)==0) choicel=8;
else if(strcmp(choice, “exit”)==0) choicel=9;
else if(strcmp(choice, “cls”)==0) choicel=10;
else if(strcmp(choice, “cd”)==0) choicel=11;
else if(strcmp(choice, “help”)==0) choicel=20;
else choicel=12;

switch (choicel)

{case 1:DirF() ;choiceend=1;break:

case 2:CreateF() ;choiceend=1;if (!wgetchar) getchar() ;break;
:DeleteF () ;choiceend=1;if (!wgetchar) getchar () ;break;
:ModifyFM() ;choiceend=1;if (!wgetchar) getchar() ;break;

case
case
case 5:choiceend=1;0penF();if (lwgetchar) getchar () ;break;
:choiceend=1;ReadF () ;if (!wgetchar) getchar () ;break;
:choiceend=1;WriteF();if (!wgetchar) getchar () ;break;
:printf ("\nYou have exited this system.”):

QuitF () :exit (0) :break:

case 10:choiceend=1;clrscr() ;break:

case 11:CdF() ;choiceend=1;break;

case 20:help() ;choiceend=1:break:

3
4
5

case 6:choiceend=1;CloseF();if (!wgetchar) getchar () ;break;
case 7
case 8
9

case

default:choiceend=0;
}
}
1
else printf(“\nAccess denied.”);

}

void help (void)
{
printf ("\nThe Command List\n”);
printf ("\nCd Attrib Creat Modify Read Open Cls Delete Exit Close\n”);
}
char *rtrim(char *str) /*remove the trailing blanks. %/
{int n=strlen(str)-1;
while (n>=0)
{if Gk(str+n)!=" ")
{x(strtn+1)="\0";
break;

}

else n—;

if (n<0) str[0]="\0";
return str;

}

char *ltrim(char *str) /#remove the heading blanks. */
{char *rtrim(char *str):

strrev (str) ;

rtrim(str) ;

strrev (str) ;

return str;

void LoginF() /*LOGIN FileSystem#/
{char loginame[MAXNAME], loginpw[9], logincpw[9], str[50];
int i, j, flag=1;
char a[25];
int findout; /*login user not exist*/
char *rtrim(char #*str); /#remove the trailing blanks. %/
char *Itrim(char *str); /#remove the heading blanks. */
void InputPW(char *password):; /*input password, use ' % replace*/
void SetPANo(int RorW):; /*Set physical address nums/
while (1)
{findout=0;
printf ("\n\nLogin Name:”);
gets (loginame) ;
ltrim(rtrim(loginame)) ;
fp mfd=fopen (“c:\\osfile\\”, “rb”);
for (i=0; fread (&ufd 1p, sizeof (OSUFD LOGIN), 1, fp_mfd) !'=0;1i++)
if (stremp (strupr (ufd 1p. ufdname), strupr (loginame))==0)
{findout=1;
strepy (loginepw, ufd 1p. ufdpword) ;
}
fclose (fp mfd) ;
if (findout==1) /*user exist*/
{printf ("Login Password:”)
InputPW(loginpw) ; /*input password, use ’* replace%/
if (stremp(loginpw, logincpw)==0)
{strcpy (username, strupr (loginame)) ;
strepy (dirname, username) ;
fp mfd=fopen(“c:\\osfile\\”, “rb”) ;
for (j=0; fread (&ufd lp, sizeof (OSUFD LOGIN), 1, fp mfd) !=0; j++)
{strcpy (str, “c:\\osfile\\”);
strcat (str, ufd 1p. ufdname) ;
ufd[j]=(0SUFD*)malloc (sizeof (OSUFD)) ;

strepy (ufd[j]->ufdname, strupr (ufd 1p. ufdname)) ;
fp ufd=fopen(str, “rb”);
feount [j]=0;

for (i=0; fread (&ufd[j]l->ufdfile[i], sizeof (OSFILE), 1, fp ufd) !=0;i++, fcount[j]++)
{ifopen[jlli]. ifopen=0;
ifopenl[j][i]. openmode=4;}
fclose (fp ufd) ;}
fclose (fp mfd) ;
ucount=j;
SetPANo (0) ;
printf ("\n\nLogin successful! Welcome to this FileSystem\n\n”) :
loginsuc=1;
return:}
else
{printf ("\n\n") ;
flag=1;
while (flag)
{printf ("Login Failed! Password Error. Try Again(Y/N):”);
gets(a) ;
Itrim(rtrim(a)) ;
if (stremp(strupr(a), ”Y”)==0) {loginsuc=0;flag=0;}
else if (stremp (strupr(a), ’N”)==0) {loginsuc=0;flag=0;return;}
}
}
}
else
{printf ("New Password(<{=8):”);
InputPW(loginpw) ; /*input new password,use ' * replace*/
printf ("\nConfirm Password(<=8) :”); /*input new password, use ' * replace*/
InputPW(logincpw) :
if (strcmp(loginpw, logincpw)==0)
{strcpy (ufd 1p. ufdname, strupr (loginame)) ;
strepy (ufd 1p. ufdpword, loginpw) ;
fp mfd=fopen(“c:\\osfile\\”, “ab”) ;
fwrite (&ufd 1p, sizeof (OSUFD LOGIN), 1, fp_mfd) ;
fclose (fp_mfd) ;
strcpy (username, strupr (loginame)) ;
strepy (dirname, loginame) ;
strepy (str, “c:\\osfile\\”);
strcat (str, username) ;
if ((fp_ufd=fopen(str, “rb”))==NULL)
{fp ufd=fopen(str, "wb”) ;
fclose (fp ufd) ;

1
fp mfd=fopen(“c:\\osfile\\”, “rb”) ;
for (j=0;fread (&ufd 1p, sizeof (OSUFD LOGIN), 1, fp mfd) !=0; j++)
{strepy (str, “c:\\osfile\\”);
strcat (str, ufd 1p. ufdname) ;
ufd[j]=(0SUFD*)malloc (sizeof (OSUFD)) :
strepy (ufd[j]->ufdname, strupr (ufd 1p. ufdname)) ;
fp ufd=fopen(str, “rb”) ;

for (i=0; fread (&ufd[j]l->ufdfile[i], sizeof (OSFILE), 1, fp ufd) !=0;i++, fcount[j]++)
{ifopen[jlli]. ifopen=0;
ifopenl[j][i]. openmode=4:;}
fclose (fp ufd) ;}
fclose (fp mfd) ;
ucount=j;
SetPANo (0) :
printf ("\n\nLogin Successful! Welcome to this System\n\n”);
loginsuc=1;
return;
}
else
{printf ("\n\n") ;
flag=1;
while (flag)
{printf ("Login Failed! Password Error. Try Again(Y/N):”);
gets(a) ;
Itrim(rtrim(a)) ;
if (stremp(strupr(a),”Y”)==0) {loginsuc=0;flag=0;}
else if (stremp(strupr(a), "N”)==0) {loginsuc=0;flag=0;return;}

void SetPANo(int RorW) /#Set physical address num, O-read, 1-write¥/
{int 1, j;
if (RorW==0)
{if ((fp file p=fopen(“c:\\osfile\\file\\file p”, “rb”))==NULL)
{fp file p=fopen(“c:\\osfile\\file\\file p”, "wb”);
fclose(fp file p);
}
fp file p=fopen(“c:\\osfile\\file\\file p”, "rb”);
for (i=0; fread (&], sizeof (int), 1, fp file p) !=0;i++)

fpaddrnol jl=1;
/xfor (i=1;i<MAX;i++)

if ((i%13)==0) fpaddrnolil=1;%*/
I

else
{fp file p=fopen(“c:\\osfile\\file\\file p”, “wb”);
/xfor (i=1;i<MAX;i++)
if((i%13)==0) fpaddrnol[i]=0;%/
for (i=0; i<MAX;i++)
if (fpaddrnolil==1)
fwrite (&i, sizeof (int), 1, fp file p):
}
fclose(fp file p);
1

void InputPW(char #password) /#input password, use ' % replacek/
{int j;
for (j=0; j<=7; j++)
{password[j]=getch() ;
if ((int) (password[j]) !=13)
{if ((int) (password[j]) !=8)
putchar () ;
else
{if (5>0)
{j=—5—:
putchar (' \b") ;putchar (' ") ;putchar C \b");
}
else j—;
}
}
else
{password[j]="\0" ;
break;
}
}
password[j]=\0" ;
}

void DirF() /#Dir FileSystemk/
{int i, j, count=0;
char sfmode[25], sfpaddr[25], str[25];
int ExistD(char *dirname); /#*Whether DirName Exist, Exist—i, Not Exist-0%/

clrser();
if (stremp(strupr (1trim(rtrim(dirname))),””) !=0)

{printf ("\n\nC:\\%s>dir\n”, dirname) ;

printf ("\n%14s%16s%14s%10s%18s\n”, "FileName”, “FileAddress”, “FileLength”, "Type”
“FileMode”) ;
j=ExistD(dirname) ;
for (i=0;i<fcount[j];i++)
{if ((i%16==0)&&(i!=0))
{printf ("\nPress any key to continue..”);
getch();

clrser();

printf ("\n%14s%16s%14s%10s%18s\n”, "FileName”, “FileAddress”, “"FileLength”, “Type”
“FileMode”) :
}
itoa(ufd[j]->ufdfileli]. fpaddr, str, 10) ;
strepy (sfpaddr, “file”) ;
strcat (sfpaddr, str) ;
if (ufd[jl->ufdfilel[i]. fmode==0) strcpy (sfmode, "Read Only”) ;
else if (ufd[j]->ufdfileli]. fmode==1) strcpy (sfmode, “Write Only”);
else if (ufd[j]->ufdfileli]. fmode==2) strcpy (sfmode, "Read And Write”);
else strcpy(sfmode, “Protect”) ;
printf ("%14s%16s%14d%10s%18s\n”, ufd[jl->ufdfileli]. fname, sfpaddr, ufd[j]->uf
dfileli]. flength, "<FILE>”, sfmode) ;
1
printf ("\n %3d file(s)\n”, fcount[jl):}
else
{printf ("\n\nC:\\>dir\n”) ;
printf ("\n%14s%18s%8s\n”, "DirName”, “OwnFileCount”, "Type”) ;
for (i=0;1i<ucount ;i++)
{if ((i%16==0)&&(i!=0))
{printf ("\nPress any key to continue...”);
getch();
clrser();
printf ("\n%14s%18s%8s\n”, “DirName”, “OwnFileCount”, "Type”) ;

}
printf ("%14s%18d%8s\n”, ufd[i]->ufdname, fcount[i], "<UFD>”) ;

count=count+fcount[i];

1
printf ("\n %3d dir(s),%5d file(s)\n”, ucount, count) ;

}
}

int ExistD(char *dirname) /*Whether DirName Exist, Exist—i, Not Exist—0%/

{int 1i;

int exist=0;
for (i=0;i<ucount:i++)
if (stremp (strupr (ufdli]—>ufdname), strupr (dirname))==0)
{exist=1;
break;
}
if (exist) return(i);:

else return(-1):

}

void CdF() /*Exchange Dir*/

{char dname [MAXNAME] ;

char *rtrim(char #*str); /#remove the trailing blanks. %/

char *1trim(char *str); /#remove the heading blanks. */

int ExistD(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/
printf ("\nPlease input DirName (cd..-Previous dir; DirNAME—-cd [DirNAME]):”);
gets (dname) ;

ltrim(rtrim(dname)) ;

if (ExistD(dname)>=0) strcpy (dirname, strupr (dname)) ;

else if (strcemp (strupr (dname), “CD..”)==0) strcpy(ltrim(rtrim(dirname)),””):

else printf ("\nError.\’ %s\’ does not exist.\n”, dname) ;

void CreateF() /*Create Filex/

{int fpaddrno, flag=1, i;

char fname [MAXNAME], str[50], str1[50], strtext[255], a[25];
char fmode[25];

char *rtrim(char *str); /#remove the trailing blanks. */
char *ltrim(char *str); /#remove the heading blanks. */
int FindPANo(); /*find out physical address numk/
int WriteF1(); /*write file*/
int ExistF(char *filename); /#Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) ;
if (stremp(strupr(dirname), strupr (username)) !=0)
{printf ("\nError. You must create file in your own dir.\n”) ;wgetchar=1;}
else
{
printf ("\nPlease input FileName:”);
gets (fname) ;
ltrim(rtrim(fname)) ;
if (ExistF (fname)>=0)
{printf ("\nError. Name \’%s\’ has already existed.\n”, fname) ;

wgetchar=1;

}
else
{printf ("Please input FileMode(0-Read Only, 1-Write Only, 2-Read and Write
3-Protect) :”);
gets (fmode) ;
ltrim(rtrim(fmode)) ;
if ((stremp (fmode, 707)==0) | | (stremp (fmode, “17)==0) | | (strcmp (fmode, “2”)==0) | |
(stremp (fmode, 737)==0))
{fpaddrno=FindPANo () ;
if (fpaddrno>=0)
{i=ExistD (username) :
strepy (ufd[i]->ufdfilelfcount[i]]. fname, fname) ;
ufd[i]->ufdfilel[fcount[i]]. fpaddr=fpaddrno;
ufdl[i]->ufdfile[fcount[il]. fmode=atoi (fmode) ;
ifopenli] [fcount[i]]. ifopen=0;
ifopenli] [fcount[i]]. openmode=4;
strepy (str, “c:\\osfile\\file\\file”):
itoa (fpaddrno, strl, 10) ;
strcat (str, strl) ;
fp file=fopen(str, “wbh”) ;
fclose(fp file);
fcount [i]++;
while (flag)
{printf ("Input text now(Y/N):”);
gets(a) ;
Itrim(rtrim(a)) ;
ufd[i]->ufdfile[fcount[i]-1]. flength=0;
if (stremp (strupr(a), ”Y”)==0)
{fp file=fopen(str, "wbh+”);
ufd[i]->ufdfile[fcount[i]-1]. flength=WriteF1();
flag=0;
}
else if(stremp(strupr(a), "N”)==0) {flag=0;wgetchar=1;}
}
printf ("\n\’%s\’ has been created successfully!\n”, fname) ;
}
else
{printf ("\nFail!No Disk Space. Please format your disk.\n”);wgetchar=1;}
}
else {printf("\nError. FileMode\’ s Range is 0-3\n”) ;wgetchar=1;}

b

int ExistF(char *filename) /*Whether FileName Exist, Exist—i, Not Exist—-0%/

{int 1, j:

int exist=0;

int ExistD(char *dirname) :

j=ExistD(dirname) ;

for (i=0;i<fcount[j];i++)

if (stremp (strupr (ufd[jl->ufdfileli]. fname), strupr (filename))==0)

{exist=1;
break;
}

if (exist) return(i);:

else return(-1):

}

int FindPANo() /*find out physical address numk/
{int 1i;
for (i=0; i<MAX;i++)
if (fpaddrnolil==0) {fpaddrnolil=1;break;}
if (i<MAX) return(i):

else return(-1);

}

int WriteF1() /*write file*/
{int length=0;
char c;
printf ("Please input text(\’#\’ stands for end):\n”);
while((c=getchar())!=#")
{fprintf(fp file, "%c”, c);
if (c!="\n") length++;
1
fprintf (fp_file, "\n”);
fclose(fp file):
return(length) ;

void DeleteF() /*Delete File*/
{char fname [MAXNAME] ;
char str[50], str1[50];
int i, j, k, flag=1;
char al[25]; /*whether deletex/
char *rtrim(char *str); /#remove the trailing blanks. */
char *ltrim(char *str); /#remove the heading blanks. */
int ExistF(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) ;

if (stremp (strupr(dirname), strupr (username)) !=0)

{printf ("\nError. You can only delete file in your own dir.\n”) ;wgetchar=1;}
else
{printf ("\nPlease input FileName:”):
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) :
if (i>=0)
{k=ExistD (username) :
if (ifopenlk][i]. ifopen==1)
{printf ("\nError. \’%s\’ is in open status. Close it before
delete. \n”, fname) ;wgetchar=1;}
else
{
while (flag)
{printf ("\’%s\’ will be deleted. Are you sure(Y/N):”, fname) ;
gets(a) ;
Itrim(rtrim(a)) ;
if (stremp (strupr(a), 7Y”)==0)
{fpaddrnolufd[k]—>ufdfile[i]. fpaddr]=0;
itoa(ufd[k]->ufdfileli]. fpaddr, str, 10) ;
for (j=i; j<fcount [k]-1; j++)
{strcpy (ufd[k]—>ufdfilelj]. fname, ufd[k]-—>ufdfile[j+1]. fname) ;
ufd[k]—>ufdfilelj]. fpaddr=ufd[k]->ufdfilel j+1]. fpaddr;
ufd[k]—>ufdfilelj]. flength=ufd[k]->ufdfile[j+1]. flength;
ufd[k]—>ufdfilelj]. fmode=ufd[k]-—>ufdfile[j+1]. fmode;
ifopen[k] [jl=ifopen[k][j+1];
}
feount [k]—;
strepy (strl, “c:\\osfile\\file\\file”);
strcat (strl, str) ;
remove (strl) ;
flag=0;
printf ("\n\’%s\’ has been deleted successfully. \n”, fname) ;
wgetchar=1;
}
else if(stremp(strupr(a), “N”)==0)
{printf ("\nError. \’%s\’ hasn\’t been deleted. \n”, fname) ;
wgetchar=1;
flag=0;}
bH
else
{printf ("\nError. \ %s\’ does not exist.\n”, fname) ;wgetchar=1;}}

void ModifyFM() /#Modify FileMode/
{char fname[MAXNAME], str[50];
int i, j, k, flag:
char fmode[25]: /*whether deletex/
char *rtrim(char *str); /¥remove the trailing blanks. %/
char *ltrim(char *str); /%remove the heading blanks. */
void InputPW(char *password): /*input password, use ' * replace*/
void SetPANo(int RorW):; /#Set physical address numsk/
int ExistF(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) :
if (strcmp(strupr (dirname), strupr (username)) !=0) {printf ("\nError.You can only
modify filemode in yourself dir.\n”) ;wgetchar=1;}
else
{ printf ("\nPlease input FileName:”);
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) :
if (i>=0)
{k=ExistD (username) :
if (ifopenlk][i]. ifopen==1)
{printf ("\nError.\’ %s\’ is in open status. Close it before
modify. \n”, fname) ;wgetchar=1;}
else
{
if (ufd[k]->ufdfilel[i]. fmode==0) strcpy(str, “read only”); /*FileModex/
else if (ufdlk]—>ufdfileli]. fmode==1) strcpy(str, “write only”):
else if (ufd[k]->ufdfile[i]. fmode==2) strcpy(str, “read and write”);
else strcpy (str, “Protect”) ;

printf ("\’%s\’ filemode is %s. \n”, fname, strupr (str)) ;
printf ("Modify to(0-read only, 1-write only, 2-read and write, 3-Protect):”);
gets (fmode) ;
ltrim(rtrim(fmode)) ;
if (strcmp (fmode, “0”)==0)
{ufd[k]->ufdfilel[i]. fmode=0;
printf ("\n\’ %s\’ has been modified to READ ONLY mode successfully. \n”, fname) ;
wgetchar=1;
}
else if (strcmp (fmode, 717)==0)
{ufd[k]->ufdfilel[i]. fmode=1;
printf ("\n\’ %s\’ has been modified to WRITE ONLY mode successfully. \n”, fname) ;
wgetchar=1;
}
else if (strcmp (fmode, 72”)==0)

{ufd[k]->ufdfile[i]. fmode=2;
printf ("\n\’ %s\’ has been modified to READ AND WRITE mode
successfully. \n”, fname) ;
wgetchar=1;
}
else if(strcmp (fmode, ”3”)==0)
{ufd[k]->ufdfileli]. fmode=3;
printf ("\n\’ %s\’ has been modified to FORBID mode successfully.\n”, fname) :
wgetchar=1;
}
else {printf("\nError.\ %s\’ is not modified.\n”, fname) ;wgetchar=1;}
1
1
else

{printf ("\nError. \’%s\’ dose not exist.\n”, fname) ;wgetchar=1;}}

void OpenF() /#Open Filex/
{char fname[MAXNAME]:
char str[25], str1[25], fmode[25];
int 1i,k;
char *rtrim(char #*str); /#remove the trailing blanks. %/
char *ltrim(char *str); /#remove the heading blanks. */
int ExistF(char *filename); /#Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) ;
if (stremp(strupr (1trim(rtrim(dirname))), ””)==0)
{printf ("\nError. Please change to ufd dir before open. \n”) ;wgetchar=1;return;}
printf ("\nPlease input FileName:”);
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) ;
if (i>=0)
{k=ExistD (dirname) ;
if(!ifopen[k][i]. ifopen)
{if (ufd[k]->ufdfile[i]. fmode==3)
{printf ("\nError. The file\’ s mode is FORBID. Can not open. \n”) ;wgetchar=1;}
else
{printf ("Please input FileOpenMode (0-Read Only, 1-Write Only, 2-Read and
Write):”);
gets (fmode) ;
ltrim(rtrim(fmode)) ;
if ((stremp (fmode, “0”)==0) | | (stremp (fmode, “17)==0) | | (strcmp (fmode, “2”)==0))
{if (fmode[0]=="0") /*open file with read only mode*/

{strcpy (str, “read only”) :
if ((ufd[k]->ufdfile[i]. fmode==0) | | (ufd[k]->ufdfile[i]. fmode==2))
ifopenl[k][i]. ifopen=1;
}
else if (fmode[0]=="1") /*open file with write only modex/
{strcpy (str, “write only”):
if ((ufd[k]->ufdfile[i]. fmode==1) | | (ufd[k]->ufdfile[i]. fmode==2))
ifopenl[k] [i]. ifopen=1;
}
else if (fmode[0]=="2") /*open file with read and write modex/
{strcpy (str, “read and write”);
if (ufd[k]->ufdfileli]. fmode==2) ifopenl[k][i].ifopen=1;
}
if (ufd[k]->ufdfileli]. fmode==0) strcpy(strl, “read only”); /*FileModex/
else if (ufdlk]—>ufdfileli]. fmode==1) strcpy(strl, “write only”);
else if (ufd[k]->ufdfileli]. fmode==2) strcpy(strl, “read and write”);
if (ifopenlk][i]. ifopen==1)
{ifopen[k][i]. openmode=atoi (fmode) ;
if (ifopen[k][i].openmode==0) strcpy(str, “read only”);
else if(ifopenlk][i]. openmode==1) strcpy(str, “write only”);
else if (ifopenlk][i]. openmode==2) strcpy(str, “read and write”);
printf ("\n\’%s\’ has been opened. OpenMode is %s, FileMode
is %s\n”, fname, strupr (str), strupr(strl)) ;
wgetchar=1;
}
else
{printf ("\nError. \’%s\’ hasn\’t been opened. OpenMode Error. OpenMode
is %s, but FileMode is %s\n”, fname, strupr (str), strupr(strl)) ;wgetchar=1;}
1
else {printf("\nError. FileOpenMode\’ s Range is 0-2\n”) ;wgetchar=1;}
1}
else {printf("\nError. \’%s\’ is in open status.\n”, fname) ;wgetchar=1;}
1
else

{printf ("\nError. \ ' %s\’ does not exist.\n”, fname) ;wgetchar=1;}

void CloseF () /#Close Filex/
{int i, k, n=0;
char fname [MAXNAME] ;
char *rtrim(char *str); /#remove the trailing blanks. */
char *ltrim(char *str); /#remove the heading blanks. */
int ExistF(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/

int ExistD(char *dirname);

if (stremp(strupr (1trim(rtrim(dirname))), ””)==0)
{printf ("\nError. Please convert to ufd dir before close. \n”) ;wgetchar=1;return;}
k=ExistD (dirname) ;
printf ("\nOpen File(s) In This Ufd:\n”):/*display openned filex/
for (i=0;i<fcount [k];i++)
{if (ifopenl[k][i].ifopen==1) {printf("%15s”, ufd[k]->ufdfileli]. fname) ;n++:}
if ((n%4==0)&& (n!=0)) printf("\n”);
1
printf ("\n%d files openned. \n”, n) ;
if (n==0) wgetchar=1;
if (n!=0)
{printf ("\nPlease input FileName:”):
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) :
if (i>=0)
{if (ifopen[k][i]. ifopen==1)
{ifopen[k][i]. ifopen=0;
ifopenlk] [i]. openmode=4;
printf ("\n\’ %s\’ has been closed successfully. \n”, fname) ;
wgetchar=1;
1
else {printf("\nError.\’%s\’ is in closing status.\n”, fname) ;wgetchar=1;}
1
else {printf("\nError. \’%s\’ is not exist.\n”, fname) ;wgetchar=1;}
1
1

void ReadF() /*Read File*/

{int i, k, n=0;

char fname [MAXNAME] ;

char str[255], str1[255], c;

char *rtrim(char *str); /#remove the trailing blanks. */

char *ltrim(char *str); /#remove the heading blanks. */

int ExistF(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) ;

if (stremp(strupr (1trim(rtrim(dirname))), ””)==0) {printf ("\nError.Please
convert to ufd dir before read.\n”) ;wgetchar=1;return;}

printf ("\nCaution:Open file first\n”);

printf ("Opened File(s) List:\n”);

k=ExistD(dirname) ;

for (i=0;i<fcount [k];i++)

{if (ifopen[k][i]. ifopen==1)
if ((ifopen[k][i]. openmode==0) || (ifopen[k][i]. openmode==2))

{printf ("%15s”, ufd[k]—>ufdfilel[i]. fname) ;n++;}
if ((n%4==0)&& (n!=0)) printf("\n");
1
printf ("\n%d files openned. \n”, n);
if (n==0) wgetchar=1;
if (n!=0)
{printf ("\nPlease input FileName:”);
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) :
if (i>=0)
{if (ifopenl[k][i]. ifopen==1)
{if ((ifopenlk][i]. openmode==0) || (ifopen[k][i]. openmode==2))
{itoa (ufd[k]->ufdfileli]. fpaddr, str, 10) ;
strepy (strl, “file”) ;
strcat (strl, str) ;
strepy (str, “c:\\osfile\\file\\”):
strcat (str, strl) ;
fp file=fopen(str, “rb”) ;
fseek (fp file, 0,0) ;
printf ("\nThe text is:\n\n”);
printf (" 7);
while (fscanf (fp file, "%c”, &c) !=EOF)
if (c=="\n") printf("\n 7);
else printf("%c”, c);
printf ("\n\n%d Length. \n”, ufd[k]->ufdfile[i]. flength) ;
fclose (fp file);
wgetchar=1;
}
else
{printf ("\nError. \’ %s\’ has been opened with WRITE ONLY mode. It isn\’t
read. \n”, fname) ;wgetchar=1;}
1
else {printf("\nError.\’%s\’ is in closing status. Please open it before
read\n”, fname) ;wgetchar=1;}
}
else {printf("\nError. \’%s\’ does not exist.\n”, fname) ;wgetchar=1;}
}
}

void WriteF() /#Write Filex/
{int i, k, n=0;

char fname [MAXNAME] ;

char str[50], str1[50], a[50];

char *rtrim(char *str); /*remove the trailing blanks. */
char *ltrim(char *str); /%remove the heading blanks. %/
int ExistF(char *filename); /*Whether FileName Exist, Exist—i, Not Exist—0%/
int ExistD(char *dirname) :
int WriteF1(): /*write file%/
if (stremp(strupr (1trim(rtrim(dirname))), ””)==0) {printf ("\nError. Please
convert to ufd dir before write.\n”) ;wgetchar=1;return:}
k=ExistD (dirname) ;
printf ("\nOpen File(s) with write only mode or read and write mode:\n”) :/*display
openned files with writable mode%/
for (i=0;i<fcount[k];i++)
{if (ifopenl[k][i].ifopen==1)
if ((ifopen[k][i]. openmode==1) || (ifopen[k][i]. openmode==2))
{printf ("%15s”, ufd[k]—>ufdfileli]. fname) ;n++;}
if ((n%4==0)&& (n!=0)) printf("\n”);
1
printf ("\n%d files open. \n”,n);
if (n==0) wgetchar=1;
if(n!=0)
{printf ("\nPlease input FileName:”);
gets (fname) ;
ltrim(rtrim(fname)) ;
i=ExistF (fname) :
if (i>=0)
{if (ifopenlk][i]. ifopen==1)
{if ((ifopen[k][i]. openmode==1) || (ifopen[k][i]. openmode==2))
{itoa(ufd[k]—>ufdfileli]. fpaddr, str, 10) ;
strepy (strl, “file”) ;
strcat (strl, str) ;
strepy (str, “c:\\osfile\\file\\”);
strcat (str, strl) ;
if (ufd[k]->ufdfileli]. flength!=0)
{printf ("\n\’ %s\’ has text. Overwrite or Append(0-overwrite, A-Append, else—not
write) :”, fname) ;
gets(a) ;
Itrim(rtrim(a)) ;
if (fp file!=NULL) fclose(fp file);
if (strcmp(strupr(a), ”0”)==0)
{printf ("\nOverwrite\n”) ;
fp file=fopen(str, “wb”);
ufd[k]->ufdfile[i]. flength=0;
ufdlk]->ufdfileli]. flength=WriteF1();
}
else if (stremp (strupr(a), “A”)==0)

{printf ("\nAppend\n”) ;
fp file=fopen(str, “ab”);
ufdlk]->ufdfileli]. flength=ufd[k]->ufdfileli]. flength+WriteF1() ;
}

else
{printf ("\nError. \’%s\’ has not been written.\n”, fname) ;
fclose(fp file);

wgetchar=1;

}

else
{fp file=fopen(str, “wb”) ;
ufd[k]—>ufdfileli]. flength=WriteF1();
}
1
else
{printf ("\nError. \’%s\’ has been opened with read only mode. It isn\’ t
writed. \n”, fname) ;wgetchar=1;}
1
else
{printf ("\nError. \’%s\’ is in closing status. Please open it before
write\n”, fname) ;wgetchar=1;}
1
else

{printf ("\nError. \’%s\’ does not exist.\n”, fname) ;wgetchar=1;}

void QuitF() /*Quit FileSystemk/
{int 1, j;

char str[50];

void SetPANo(int RorW); /*Set physical address num, O-read, 1-write*/
SetPANo (1) ;

if (fp mfd!=NULL) fclose (fp mfd);
if (fp ufd!=NULL) fclose (fp ufd);
if (fp file!=NULL) fclose(fp file);
for (j=0; j<ucount; j++)

{strcpy (str, “c:\\osfile\\”);

strcat (str, ufd[jl->ufdname) ;
Itrim(rtrim(str)) ;

fp _ufd=fopen(str, "wb”) ;
fclose (fp ufd) ;

fp _ufd=fopen(str, “ab”) ;

for (i=0;i<fcount[j];i++)

fwrite (ufd[j]->ufdfile[i], sizeof (OSFILE), 1, fp ufd) ;
fclose (fp ufd) ;}

}
6. SEHIBITEER
(1) BEfh5E, A1

et C:\Win-TC\projects\filsys.exe

Login Name: jsj
New Password(<=8):xxsxxx
Confirm Password(<{=8):xx%xxx

B 1 SR
(2) RIS E, WA 2

v G\Win-TC\projects \filsys.exe
C:N\JSJUodir

FileName FileAddress FileLength

FileMode
B file(s)

:\JSJ>create file@d

ad command or file name.
:\JSJ>creat

'file®’ has been created successfully!

C:\JSJ>

2 RIS S E
(3) MIER>CHFmE, KA 3

=\Win-TC\projects\filsys.exe

C:\JSJ>dir

FileName FileAddress FilelLength FileMode
(4} ile > Read And Hrite
filel 19

Read And Hrite
2 file(s)

C:\JSJ>delete

Please input FileName:file®@
'FILE®’ will be deleted. Are vou sure(Y/N):y

'FILE®’ has been deleted successfully.

C:\JSJ>

B 3 MERscHAmE
(4) $TH 5T, WE 4

in-TC\projects\filsys.exe

C:\JSJ>open

Please input FileName:filel
Please input FileOpenMode(@-Read Only,l-Hrite Only,2-Read and Hrite):2

'FILEL’ has been opened. OpenMode is READ AND HRITE,FileMode is READ AND WRITE

C:NJSJ>_

B 4 T3
(5) BCCHHFmE, KA S

\Win-TC\projects\filsys.exe

C:\JSddmodify

Open File(s) Eith write only mode or read and write mode:
1 files open.

Please input FileName:filel

'FILE1’ has text. Overwrite or Append{(QO-overwri

stands for end):

5 BECU A
(6) BEXHFFm, W6

\Win-TC\projects\filsys.exe

C:\JSJ>read

Caution:Open file first
Opened File(s%lList:

1 files openned.
Please input FileName:filel

The text is:

this is an example!
this is the end.

6 XA

