
进程调度算法模拟

一、实验分析：

在操作系统中，由于进程总数多于处理机，它们必然竞争处理机。进程调度的功能就是按

一定策略、动态地把处理机分配给处于就绪队列中的某一进程并使之执行。根据不同的系

统设计目标，可有多种选择某一进程的策略。例如系统开销较少的静态优先数法，适合于

分时系统的轮轮法以及 UNIX 采用的动态优先数反馈法等。本实验是采用优先数法进程调

度算法来模拟演示进程调度，编程语言为 C 语言。

二、实验设计：

 （1）设计一个有 N 个进程共行的进程调度程序。每个进程由一个进程控制块

PCB 表示。进程控制块包括以下信息：进程名，进程优先数，进程需要运行的时间，占用

CPU 的时间以及进程的状态等。

 （2）本调度程序用优先数调度算法。

 （3）编写程序并调试运行。

三、算法说明：

本程序采用优先数算法对 N 个进程进行调度。每个进程处于 R，就绪 W 和完成 F 三种状态

之一，并假定起始状态就是就绪状态 W。

为了方便处理，有如下假设：每个进程的优先数=50-进程完成总耗时。

/*进程调度-----优先级算法源程序*/

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

typedef struct node /*创建 PCB*/

{ char name[10]; /*进程标识*/

 int prio; /*进程优先数*/

 int cputime; /*进程占用 CPU 时间*/

 int needtime; /*进程完成所需时间*/

 int count; /*计数器*/

 char state; /*进程的状态*/

 struct node *next; /*链指针*/

}PCB;

PCB *finish,*ready,*tail,*run;

int N;

firstin() /*创建就绪队列对头指针*/

{

 run=ready;

 run->state='R';

 ready=ready->next;

}

void prt(char algo) /*演示进程调度*/

{

 PCB *p;

 printf(" NAME CPUTIME NEEDTIME PRIORITY STATUS\n");

 if(run!=NULL)

 printf(" %-10s%-10d%-10d%-10d %c\n",run->name,

 run->cputime,run->needtime,run->prio,run->state);

 p=ready;

 while(p!=NULL)

 { printf(" %-10s%-10d%-10d%-10d %c\n",p->name,

 p->cputime,p->needtime,p->prio,p->state);

 p=p->next;

 }

 p=finish;

 while(p!=NULL)

 { printf(" %-10s%-10d%-10d%-10d %c\n",p->name,

 p->cputime,p->needtime,p->prio,p->state);

 p=p->next;

 }

 getch();

}

insert(PCB *q)

{

 PCB *p1,*s,*r;

 int b;

 s=q;

 p1=ready;

 r=p1;

 b=1;

 while((p1!=NULL)&&b)

 if(p1->prio>=s->prio)

 {

 r=p1;

 p1=p1->next;

 }

 else

 b=0;

 if(r!=p1)

 {

 r->next=s;

 s->next=p1;

 }

 else

 {

 s->next=p1;

 ready=s;

 }

}

void create(char alg) /*创建各个进程*/

{

 PCB *p;

 int i,time;

 char na[10];

 ready=NULL;

 finish=NULL;

 run=NULL;

 for(i=1;i<=N;i++)

 {

 p=malloc(sizeof(PCB));

 printf("Enter NAME of process:\n");

 scanf("%s",na);

 printf("Enter TIME of process(less than 50):\n");

 scanf("%d",&time);

 strcpy(p->name,na);

 p->cputime=0;

 p->needtime=time;

 p->state='w';

 p->prio=50-time; /*假设优先级与耗时之和为 50*/

 if(ready!=NULL)

 insert(p);

 else

 {

 p->next=ready;

 ready=p;

 }

 }

 clrscr();

 printf(" DISPLAY OF THE PROGRESS:\n");

 printf("**\n");

 prt(alg);

 run=ready;

 ready=ready->next;

 run->state='R';

}

priority(char alg) /*优先级算法调度*/

{

 while(run!=NULL&&run->prio>=0)

 {

 run->cputime=run->cputime+1;

 run->needtime=run->needtime-1;

 run->prio=run->prio-3;

 if(run->needtime==0)

 {

 run->next=finish;

 finish=run;

 run->state='F';

 run=NULL;

 if(ready!=NULL)

 firstin();

 }

 else

 if((ready!=NULL)&&(run->prio<ready->prio))

 {

 run->state='W';

 insert(run);

 firstin();

 }

 prt(alg);

 }

}

main()

{ char algo;

 clrscr();

loop: printf("Enter THE TOTAL NUMBER of PCB(less than 10 is better):\n");

 scanf("%d",&N);

 if(N>10)

 {printf("it's too big,and select a small number.\n");

 goto loop;}

 create(algo);

 priority(algo);

}

