
1

广东开放大学计算机科学与技术专业

《数据结构》

课程实验方案

人工智能学院

2019/9/6

2

目录

一、课程基本信息... 3

二、课程简介... 3

三、考核说明或要求... 4

四、实验名称：... 4

实验一：单链表的基本操作...4

实验二：栈和队列的应用...21

实验三：二叉树的基本算法...25

实验四：图的建立和搜索...28

实验五：顺序查找和折半查...31

实验六：综合性实验... 43

3

一、课程基本信息

学院：人工智能学院

专业名称：计算机科学与技术

课程名称：数据结构

课程编码（课程 ID号）：10090

课程性质（专业必修课／专业选修课）：专业必修课

适用专业：计算机科学与技术

先修课程：离散数学、C语言程序设计

课程实验（实训）负责教师：李美满

课程总学分：4

课程总学时：72

课程实验（训）总学时：18

二、课程简介

本课程是面向计算机科学与技术专业开设的专核心课程。是学习

其他软件开发与设计等方面课程的基础。主要内容包括：线性表、栈

和队列、串、数组和广义表、树、图、查找算法和排序算法。数据结

构研究数据的组织方式，内容丰富、学习量大，隐含在各部分内容中

的方法和技术多，旨在让学生掌握计算机软件系统所必需的数据结构

的算法。要求学生掌握贯穿全课程的动态链表存储结构，掌握算法设

4

计的动态性和抽象性。要求学生学会分析研究计算机加工的数据对象

的特征，以便在实际应用中选择适当的数据结构、存储结构和相应算

法，初步掌握算法的时间与空间性能分析技巧，并培养复杂程序设计

的技能。

三、考核说明或要求

本课程共有 6 个实训，实验一：单链表的基本操作 20 分，实验

二：栈和队列的应用 15分，实验三：二叉树的基本算法 20分，实验

四：图的建立和搜索 15分，实验五：顺序查找和折半查 15 分，实验

六：综合性实验 15 分，满分 100 分。

四、实验名称：

实验一：单链表的基本操作

预计课时：4学时

实训时长： 180(分钟)

实验简介：以单链表形式创建一个学生表或图书表，并能实现相

关的查找、插入和删除等算法。

实验目标：

1、掌握线性表的定义；

2、掌握线性表的基本操作，如建立、查找、插入和删除等。

5

实验内容：

定义一个包含学生信息（学号，姓名，成绩）的链表和顺序表，

使其具有如下功能：

(1) 根据指定学生个数，逐个输入学生信息；

(2) 逐个显示学生表中所有学生的相关信息；

(3) 根据姓名进行查找，返回此学生的学号和成绩；

(4) 根据指定的位置可返回相应的学生信息（学号，姓名，成绩）；

(5) 给定一个学生信息，插入到表中指定的位置；

(6) 删除指定位置的学生记录；

(7) 统计表中学生个数。

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

//1、教材单链表的基本操作的实现
#include<iostream>
#include<string>
#include<iomanip>
#include<fstream>
using namespace std;
#define OK 1
#define ERROR 0
#define OVERFLOW -2
typedef int Status; //Status 是函数返回值类型，其值是函数结果状态代码。
typedef int ElemType; //ElemType 为可定义的数据类型，此设为 int 类型

struct Book {
string id;//ISBN
string name;//书名

6

double price;//定价
};
typedef struct LNode {

Book data; //结点的数据域
struct LNode *next; //结点的指针域

} LNode, *LinkList; //LinkList 为指向结构体 LNode 的指针类型

string head_1, head_2, head_3;
int length;

Status InitList_L(LinkList &L) { //算法 2.6 单链表的初始化
//构造一个空的单链表 L
L = new LNode; //生成新结点作为头结点，用头指针 L 指向头结点
L->next = NULL; //头结点的指针域置空
return OK;

}

Status GetElem_L(LinkList L, int i, Book &e) { //算法 2.7 单链表的取值
//在带头结点的单链表 L 中查找第 i 个元素
//用 e 返回 L 中第 i 个数据元素的值
int j;
LinkList p;
p = L->next;
j = 1; //初始化，p 指向第一个结点，j 为计数器
while (j < i && p) { //顺链域向后扫描，直到 p 指向第 i 个元素或 p 为空

p = p->next; //p 指向下一个结点
++j; //计数器 j 相应加 1

}
if (!p || j > i)

return ERROR; //i 值不合法 i＞n 或 i<=0
e = p->data; //取第 i 个结点的数据域
return OK;

} //GetElem_L

LNode *LocateElem_L(LinkList L, int e) { //算法 2.8 按值查找
//在带头结点的单链表 L 中查找值为 e 的元素
LinkList p;
p = L->next;
while (p && p->data.price != e)//顺链域向后扫描，直到 p 为空或 p 所指结点的

数据域等于 e
p = p->next; //p 指向下一个结点

return p; //查找成功返回值为 e 的结点地址 p，查找失败 p 为 NULL
} //LocateElem_L

Status ListInsert_L(LinkList &L, int i, Book &e) { //算法 2.9 单链表的插入
//在带头结点的单链表 L 中第 i 个位置插入值为 e 的新结点

7

int j;
LinkList p, s;
p = L;
j = 0;
while (p && j < i - 1) {

p = p->next;
++j;

}//查找第 i 个结点，p 指向该结点
if (!p || j > i - 1)

return ERROR; //i＞n+1 或者 i＜1
s = new LNode; //生成新结点*s
s->data = e; //将结点*s 的数据域置为 e
s->next = p->next; //将结点*s 的指针域指向结点 ai
p->next = s; //将结点*p 的指针域指向结点*s
++length;
return OK;

} //ListInsert_L

Status ListDelete_L(LinkList &L, int i) { //算法 2.9 单链表的删除
//在带头结点的单链表 L 中，删除第 i 个位置
LinkList p, q;
int j;
p = L;
j = 0;
while ((p->next) && (j < i - 1)) //查找第 i?1 个结点，p 指向该结点
{

p = p->next;
++j;

}
if (!(p->next) || (j > i - 1))

return ERROR; //当 i>n 或 i<1 时，删除位置不合理
q = p->next; //临时保存被删结点的地址以备释放
p->next = q->next; //改变删除结点前驱结点的指针域
delete q; //释放删除结点的空间
--length;
return OK;

} //ListDelete_L

void CreateList_H(LinkList &L, int n) { //算法 2.11 前插法创建单链表
//逆位序输入 n 个元素的值，建立到头结点的单链表 L
LinkList p;
L = new LNode;
L->next = NULL; //先建立一个带头结点的空链表
length = 0;
fstream file;
file.open("book.txt");

8

if (!file) {
cout << "未找到相关文件，无法打开！" << endl;
exit(ERROR);

}
file >> head_1 >> head_2 >> head_3;
while (!file.eof()) {

p = new LNode; //生成新结点*p
file >> p->data.id >> p->data.name >> p->data.price; //输入元素值赋

给新结点*p 的数据域
p->next = L->next;
L->next = p; //将新结点*p 插入到头结点之后
length++;//同时对链表长度进行统计

}
file.close();

} //CreateList_F

void CreateList_R(LinkList &L, int n) { //算法 2.12 后插法创建单链表
//正位序输入 n 个元素的值，建立带表头结点的单链表 L
LinkList p, r;
L = new LNode;
L->next = NULL; //先建立一个带头结点的空链表
r = L; //尾指针 r 指向头结点
length = 0;
fstream file; //打开文件进行读写操作
file.open("book.txt");
if (!file) {

cout << "未找到相关文件，无法打开！" << endl;
exit(ERROR);

}
file >> head_1 >> head_2 >> head_3;
while (!file.eof()) { //将文件中的信息运用后插法插入到链表中

p = new LNode;//生成新结点
file >> p->data.id >> p->data.name >> p->data.price;//输入元素值赋

给新结点*p 的数据域
p->next = NULL;
r->next = p;//将新结点*p 插入尾结点*r 之后
r = p;//r 指向新的尾结点*p
length++; //同时对链表长度进行统计

}
file.close();

} //CreateList_L

int main() {
int a, n, choose;
double price;
Book e;

9

LinkList L, p;
cout << "1. 建立\n";
cout << "2. 输入\n";
cout << "3. 取值\n";
cout << "4. 查找\n";
cout << "5. 插入\n";
cout << "6. 删除\n";
cout << "7. 输出\n";
cout << "0. 退出\n\n";

choose = -1;
while (choose != 0) {

cout << "请选择:";
cin >> choose;
switch (choose) {
case 1: //建立一个单链表

if (InitList_L(L))
cout << "成功建立链表!\n\n";

break;
case 2: //使用后插法创建单链表

CreateList_R(L, length);
cout << "输入 book.txt 信息完毕\n\n";
break;

case 3: //单链表的按序号取值
cout << "请输入一个位置用来取值:";
cin >> a;
if (GetElem_L(L, a, e)) {

cout << "查找成功\n";
cout << "第" << a << "本图书的信息是：\n";
cout << left << setw(15) << e.id << "\t" << left << setw(50)

<< e.name << "\t" << left << setw(5) << e.price <<
endl

<< endl;
} else

cout << "查找失败\n\n";
break;

case 4: //单链表的按值查找
cout << "请输入所要查找价格:";
cin >> price;
if (LocateElem_L(L, price) != NULL) {

cout << "查找成功\n";
cout << "该价格对应的书名为：" << LocateElem_L(L,

price)->data.name
<< endl << endl;

} else
cout << "查找失败! 定价" << price << " 没有找到\n\n";

10

break;
case 5: //单链表的插入

cout << "请输入插入的位置和书的信息，包括：编号 书名 价格（用空
格隔开）:";

cin >> a;
cin >> e.id >> e.name >> e.price;
if (ListInsert_L(L, a, e))

cout << "插入成功.\n\n";
else

cout << "插入失败!\n\n";
break;

case 6: //单链表的删除
cout << "请输入所要删除的书籍的位置:";
cin >> a;
if (ListDelete_L(L, a))

cout << "删除成功!\n\n";
else

cout << "删除失败!\n\n";
break;

case 7: //单链表的输出
cout << "当前图书系统信息（链表）读出:\n";
p = L->next;
while (p) {

cout << left << setw(15) << p->data.id << "\t" << left <<
setw(50) << p->data.name << "\t" << left << setw(5)

<< p->data.price << endl;
p = p->next;

}
cout << endl;
break;

}
}
return 0;

}

//2、实验链表的参考源程序：
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
#include<string.h>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#include<iostream>
using namespace std;

11

typedef int Status; // 定义函数返回值类型

typedef struct
{

char no[10]; // 学号
char name[20]; // 姓名
double score; // 成绩

}student;

typedef student ElemType;

typedef struct LNode
{

ElemType data; // 数据域
struct LNode *next; //指针域

}LNode,*LinkList;

Status InitList(LinkList &L) // 构造空链表 L
{

L=(struct LNode*)malloc(sizeof(struct LNode));
L->next=NULL;
return OK;

}

Status GetElem(LinkList L,int i,ElemType &e) // 访问链表，找到 i 位置的数据域，
返回给 e
{

LinkList p;
p=L->next;
int j=1;
while(p&&j<i)
{

p=p->next;
++j;

}
if(!p||j>i) return ERROR;
e=p->data;
return OK;

}

Status Search(LNode L,char str[],LinkList &p) // 根据名字查找
{

p=L.next;
while(p)
{

12

if(strcmp(p->data.name,str)==0)
return OK;

p=p->next;
}
return ERROR;

}

Status ListInsert(LinkList L,int i,ElemType e) // 在 i 个位置插入某个学生的信息
{

LinkList p,s;
p=L;
int j=0;
while(p&&j<i-1)
{

p=p->next;
++j;

}
if(!p||j>i-1) return ERROR;
s=(struct LNode*)malloc(sizeof(LNode));
s->data=e;
s->next=p->next;
p->next=s;
return OK;

}

Status ListDelete(LinkList p,int i) // 删除 i 位置的学生信息
{

int j=0;
while((p->next)&&(j<i-1))
{

p=p->next;
++j;

}
if(!(p->next)||(j>i-1)) return ERROR;
LinkList q;
q=p->next;
p->next=q->next;
delete q;
return OK;

}

void Input(ElemType *e)
{

cout<<"姓名：";
cin>>e->name;

cout<<"学号：";

13

cin>>e->no;
cout<<"成绩：";

cin>>e->score;
cout<<"完成输入\n\n";

}

void Output(ElemType *e)
{

printf("姓名:%-20s\n 学号:%-10s\n 成绩:%-10.2lf\n\n",
e->name,e->no,e->score);
}

int main()
{

LNode L;
LinkList p;
ElemType a,b,c,d;
cout<<"------------10.2.34 版 -----------\n";
cout<<"1. 构造顺序表\n";
cout<<"2. 录入指定人数的学生信息\n";
cout<<"3. 显示学生表中的所有信息\n";
cout<<"4. 根据姓名查找该学生，并返回学号和成绩\n";
cout<<"5. 根据某指定位置显示该学生信息\n";
cout<<"6. 在指定位置插入学生信息\n";
cout<<"7. 在指定位置删除学生信息\n";
cout<<"8. 统计学生个数\n";
cout<<"0. 退出\n";
cout<<"------------------------\n";
int n,choose=-1;
while(choose!=0)
{

puts("请输入你要选择的功能前的序号:");
cin>>choose ;
if(choose==0)

break;
else if (choose==1)
{

if(InitList(p))
cout<<"建立顺序表成功\n";

else
cout<<"建立顺序表失败\n";

}

else if (choose==2)
{

14

cout<<"将要输入学生的人数：";
cin>>n;
for(int i=1;i<=n;i++)
{

printf("第%d 个学生:\n",i);
Input(&a);
ListInsert(&L,i,a);

}

}

else if (choose==3)
{

for(int i=1;i<=n;i++)
{

GetElem(&L,i,b);
Output(&b);

}

}
else if (choose==4)
{

char s[20];
cout<<"请输入要查找的学生姓名:";
cin>>s;
if(Search(L,s,p))

Output(&(p->data));
else

cout<<"对不起，查无此人";
puts("");

}
else if (choose==5)
{

cout<<"请输入要查询的位置:";
int id1;
cin>>id1;
GetElem(&L,id1,c);
Output(&c);

}
else if (choose==6)
{

cout<<"请输入要插入的位置:";
int id2;

15

cin>>id2;
cout<<"请输入学生信息:\n";
Input(&d);
if(ListInsert(&L,id2,d))
{

n++;
cout<<"插入成功"; ;
puts("");

}
else
{

cout<<"插入失败";
puts("");

}

}
else if (choose==7)
{

cout<<"请输入要删除的位置:";
int id3;
cin>>id3;
if(ListDelete(&L,id3))
{

n--;
cout<<"删除成功";
puts("");

}
else
{

cout<<"删除失败";
puts("");

}

}
else if (choose==8)

{
cout<<"已录入的学生个数为:"<<n<<endl;
break;

}

}
cout<<"\n\n 谢谢您的使用，请按任意键退出\n\n\n";
system("pause");
return 0;

}

16

//顺序表的参考源程序：
#include<stdio.h>
#include<malloc.h>
#include<stdlib.h>
#include<string.h>
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXSIZE 100

typedef int Status; // 定义函数返回值类型

typedef struct
{

char no[10]; // 学号
char name[20]; // 姓名
int score; // 成绩

}student;

typedef student ElemType;

typedef struct
{

ElemType *elem; // 存储空间的基地址
int length; // 当前长度

}SqList;

Status InitList(SqList *L) // 构造空的顺序表 L
{

L->elem=(ElemType *)malloc(sizeof(ElemType)*MAXSIZE);
if(!L->elem) exit(OVERFLOW);
L->length=0;
return OK;

}

ElemType GetElem(SqList &L,int i) // 访问顺序表，找到 i 位置，返回给 e
{

return L.elem[i];
}

int Search(SqList &L,char str[]) // 根据名字查找，返回该同学在顺序表中的编号
{

for(int i=1;i<=L.length;i++)
{

if(strcmp(L.elem[i].name,str)==0)

17

return i;
}
return 0;

}

Status ListInsert(SqList &L,int i,ElemType e) // 在 i 位置插入某个学生的信息
{

if((i<1)||(i>L.length+1)) return ERROR;
if(L.length==MAXSIZE) return ERROR;
for(int j=L.length;j>=i;j--)
{

L.elem[j+1]=L.elem[j];
}
L.elem[i]=e;
++L.length;
return OK;

}

Status ListDelete(SqList &L,int i) // 在顺序表中删除 i 位置的学生信息
{

if((i<1)||(i>L.length)) return ERROR;
for(int j=i;j<=L.length;j++)
{

L.elem[j]=L.elem[j+1];
}
--L.length;
return OK;

}

void Input(ElemType *e)
{

printf("姓名:"); scanf("%s",e->name);
printf("学号:"); scanf("%s",e->no);
printf("成绩:"); scanf("%d",&e->score);
printf("输入完成\n\n");

}

void Output(ElemType *e)
{

printf("姓名:%-20s\n 学号:%-10s\n 成
绩:%-10.2d\n\n",e->name,e->no,e->score);
}

int main()
{

SqList L;

18

ElemType a,b,c,d;
printf("------------10.2.34 版-----------\n");
puts("1. 构造顺序表");
puts("2. 录入指定人数的学生信息");
puts("3. 显示学生表中的所有信息");
puts("4. 根据姓名查找该学生，并返回学号和成绩");
puts("5. 根据某指定位置显示该学生信息");
puts("6. 在指定位置插入学生信息");
puts("7. 在指定位置删除学生信息");
puts("8. 统计学生个数");
puts("0. 退出");
printf("------------------------\n");
int x,choose;
while(1)
{

puts("请输入你要选择的功能前的序号:");
scanf("%d",&choose);
if(choose==0) break;
switch(choose)
{

case 1:
if(InitList(&L))

printf("成功建立顺序表\n\n");
else

printf("顺序表建立失败\n\n");
break;

case 2:
printf("请输入要录入学生的人数（小于 100）:");
scanf("%d",&x);
for(int i=1;i<=x;i++)
{

printf("第%d 个学生:\n",i);
Input(&L.elem[i]);

}
L.length=x;
puts("");
break;

case 3:
for(int i=1;i<=x;i++)
{

a=GetElem(L,i);
Output(&a);

}
break;

case 4:
char s[20];

19

printf("请输入要查找的学生姓名:");
scanf("%s",s);
if(Search(L,s))

Output(&L.elem[Search(L,s)]);
else

puts("对不起，查无此人");
puts("");
break;

case 5:
printf("请输入要查询的位置:");
int id1;
scanf("%d",&id1);
b=GetElem(L,id1);
Output(&b);
break;

case 6:
printf ("请输入要插入的位置:");
int id2;
scanf("%d",&id2);
printf("请输入学生信息:\n");
Input(&c);
if(ListInsert(L,id2,c))
{

x++;
puts("插入成功");
puts("");

}
else
{

puts("插入失败");
puts("");

}
break;

case 7:
printf("请输入要删除的位置:");
int id3;
scanf("%d",&id3);
if(ListDelete(L,id3))
{

x--;
puts("删除成功");
puts("");

}
else
{

puts("删除失败");

20

puts("");
}
break;

case 8:
printf("已录入的学生个数为:%d\n\n",L.length);
break;

}
}
printf("\n\n 谢谢您的使用，请按任意键退出\n\n\n");
system("pause");
return 0;

}

21

实验二：栈和队列的应用

预计课时：4学时

实训时长： 180(分钟)

实验简介：借助栈或队列来解决某些实际应用问题

实验目标：

1、掌握栈的定义及实现；

2、掌握利用栈求解 Hanoi 塔问题；

3、链栈实现数制的转换。

实验内容：

1、Hanoi 塔问题

规则:

(1) 每次只能移动一个圆盘

(2) 圆盘可以插在 A,B 和 C 中的任一塔座上

(3) 任何时刻不可将较大圆盘压在较小圆盘之上

n = 1，则直接从 A 移到 C。否则

(1)用 C 柱做过渡，将 A 的(n-1)个移到 B

(2)将 A 最后一个直接移到 C

(3)用 A 做过渡，将 B 的 (n-1) 个移到 C

2、数制的转换

(1) 初始化一个空栈 S。

(2)当十进制数 N 非零时，循环执行以下操作：

把 N与 8 求余得到的八进制数压入栈 S；

N更新为 N与 8的商。

22

(3)当栈 S 非空时，循环执行以下操作：

弹出栈顶元素 e；

输出 e。

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

/***顺序栈的实现***/

#include<iostream>
#include<fstream>
using namespace std;

//顺序栈定义
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define MAXSIZE 100//顺序栈存储空间的初始分配量
typedef int Status;
typedef char SElemType;

typedef struct {
SElemType *base;//栈底指针
SElemType *top;//栈顶指针
int stacksize;//栈可用的最大容量

} SqStack;

//算法 3.1 顺序栈的初始化
Status InitStack(SqStack &S) {
//构造一个空栈 S
S.base = new SElemType[MAXSIZE];// 为 顺 序 栈 动 态 分 配 一 个 最 大 容 量 为

MAXSIZE 的数组空间
if (!S.base)

exit(OVERFLOW); //存储分配失败
S.top = S.base; //top 初始为 base，空栈
S.stacksize = MAXSIZE; //stacksize 置为栈的最大容量 MAXSIZE
return OK;

}

23

//算法 3.2 顺序栈的入栈
Status Push(SqStack &S, SElemType e) {
// 插入元素 e 为新的栈顶元素
if (S.top - S.base == S.stacksize)

return ERROR; //栈满
*(S.top++) = e; //元素 e 压入栈顶，栈顶指针加 1
return OK;

}
//算法 3.3 顺序栈的出栈
Status Pop(SqStack &S, SElemType &e) {
//删除 S 的栈顶元素，用 e 返回其值
if (S.base == S.top)

return ERROR;//栈空
e = *(--S.top); //栈顶指针减 1，将栈顶元素赋给 e
return OK;

}
//算法 3.4 取顺序栈的栈顶元素
char GetTop(SqStack S) {//返回 S 的栈顶元素，不修改栈顶指针
if (S.top != S.base) //栈非空

return *(S.top - 1); //返回栈顶元素的值，栈顶指针不变
}

int main() {
SqStack s;
int choose, flag = 0;
SElemType j, e, t;
cout << "1.初始化\n";
cout << "2.入栈\n";
cout << "3.读栈顶元素\n";
cout << "4.出栈\n";
cout << "0.退出\n\n";

choose = -1;
while (choose != 0) {

cout << "请选择:";
cin >> choose;
switch (choose) {
case 1://算法 3.1 顺序栈的初始化

if (InitStack(s)) {
flag = 1;
cout << "成功对栈进行初始化\n\n";

} else
cout << "初始化栈失败\n\n";

break;
case 2: {//算法 3.2 顺序栈的入栈

fstream file;

24

file.open("SqStack.txt");//
if (!file) {

cout << "错误！未找到文件！\n\n" << endl;
exit(ERROR);

}
if (flag) {

flag = 1;
cout << "进栈元素依次为：\n";
while (!file.eof()) {

file >> j;
if (file.fail())

break;
else {

Push(s, j);
cout << j << " ";

}
}
cout << endl << endl;

} else
cout << "栈未建立，请重新选择\n\n";

file.close();
}

break;
case 3://算法 3.3 顺序栈的出栈

if(flag != -1 && flag != 0)
cout << "栈顶元素为：\n" << GetTop(s) << endl << endl;

else
cout << "栈中无元素，请重新选择\n" << endl;

break;
case 4://算法 3.4 取顺序栈的栈顶元素

cout << "依次弹出的栈顶元素为:\n";
while (Pop(s, t)){

flag = -1;
cout << t << " ";

}
cout << endl << endl;
break;

}
}
return 0;

}

/***Hanoi 塔问题***/

#include"3.10.h"

25

int main() {
int n;
char a, b, c;
a = '1';
b = '2';
c = '3';
cout << "请输入初始第一个柱子上的圆盘个数：" << endl;
cin >> n;
cout << "将第一个柱子上的圆盘全部移动到第三个柱子上的过程为：" << endl;
Hanoi(n, a, b, c);
return 0;

}

//算法 3.10 Hanoi 塔问题的递归算法
#include<iostream>
using namespace std;

int m = 0;//（m 是初值为 0 的全局变量，对搬动计数）
void move(char A, int n, char C) // 搬动操作
{
cout << "第" << ++m << "步," << "将编号为" << n << "的圆盘从第" << A

<< "个柱子上移到第" << C
<< "个柱子上" << endl;

}

void Hanoi(int n, char A, char B, char C) {//将塔座 A 上的 n 个圆盘按规则搬到 C
上，B 做辅助塔
if (n == 1)

move(A, 1, C); //将编号为 1 的圆盘从 A 移到 C
else {

Hanoi(n - 1, A, C, B); //将 A 上编号为 1 至 n-1 的圆盘移到 B，C 做辅助塔
move(A, n, C);//将编号为 n 的圆盘从 A 移到 C
Hanoi(n - 1, B, A, C); //将 B 上编号为 1 至 n-1 的圆盘移到 C，A 做辅助塔

}
}

//算法 3.20 数制的转换(链栈实现)
void conversion(int N) {//对于任意一个非负十进制数，打印输出与其等值的八进
制数
int e;
LinkStack S;
InitStack(S); //初始化空栈 S
while (N) //当 N 非零时,循环
{

Push(S, N % 8); //把 N 与 8 求余得到的八进制数压入栈 S

26

N = N / 8; //N 更新为 N 与 8 的商
}
while (!StackEmpty(S)) //当栈 S 非空时，循环
{

Pop(S, e); //弹出栈顶元素 e
cout << e; //输出 e

}
}
int main() {//对于输入的任意一个非负十进制数，打印输出与其等值的八进制数
int n, e;
cout << "输入一个非负十进制数:" << endl;
cin >> n;

conversion(n);
return 0;

}

27

实验三：二叉树的基本算法

预计课时：4学时

实训时长： 180(分钟)

实验简介：利用二叉链表方法建立二叉树，实现二叉树的前、中、

后序三种遍历算法，并运用遍历算法实现二叉树的其他操作，如计算

二叉树结点个数、叶子结点个数、二叉树的高度等。

实验目标：

1．掌握二叉树的定义；

2．掌握二叉树的基本操作，如二叉树的建立、遍历、结点个数统

计、树的深度计算等

实验内容：

用递归的方法实现以下算法：

1、以二叉链表表示二叉树，建立一棵二叉树；

2、输出二叉树的中序遍历结果；

3、计算二叉树的深度；

4、统计二叉树的结点个数。

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

28

//算法 5.3 先序遍历的的顺序建立二叉链表
#include<iostream>
using namespace std;

//二叉树的二叉链表存储表示
typedef struct BiNode
{
char data; //结点数据域
struct BiNode *lchild,*rchild; //左右孩子指针
}BiTNode,*BiTree;

void CreateBiTree(BiTree &T)
{
//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树 T
char ch;
cin >> ch;
if(ch=='#') T=NULL; //递归结束，建空树
else{
T=new BiTNode;
T->data=ch; //生成根结点
CreateBiTree(T->lchild); //递归创建左子树
CreateBiTree(T->rchild); //递归创建右子树

} //else
} //CreateBiTree

//用算法 5.1 中序遍历的递归算法
void InOrderTraverse(BiTree T)
{
//中序遍历二叉树 T 的递归算法
if(T){
InOrderTraverse(T->lchild);
cout << T->data;
InOrderTraverse(T->rchild);

}
}
void main()
{
BiTree tree;
cout<<"请输入建立二叉链表的序列：\n";
CreateBiTree(tree);
cout<<"所建立的二叉链表中序序列：\n";
InOrderTraverse(tree);
cout<<endl;
}
//算法 5.5 计算二叉树的深度
#include<iostream>

29

using namespace std;

//二叉树的二叉链表存储表示
typedef struct BiNode
{
char data; //结点数据域
struct BiNode *lchild,*rchild; //左右孩子指针
}BiTNode,*BiTree;

//用算法 5.3 建立二叉链表
void CreateBiTree(BiTree &T)
{
//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树 T
char ch;
cin >> ch;
if(ch=='#') T=NULL; //递归结束，建空树
else{
T=new BiTNode;
T->data=ch; //生成根结点
CreateBiTree(T->lchild); //递归创建左子树
CreateBiTree(T->rchild); //递归创建右子树

} //else
} //CreateBiTree

int Depth(BiTree T)
{
int m,n;
if(T == NULL) return 0; //如果是空树，深度为 0，递归结束
else
{
m=Depth(T->lchild); //递归计算左子树的深度记为 m
n=Depth(T->rchild); //递归计算右子树的深度记为 n
if(m>n) return(m+1); //二叉树的深度为 m 与 n 的较大者加 1
else return (n+1);

}
}

void main()
{
BiTree tree;
cout<<"请输入建立二叉链表的序列：\n";
CreateBiTree(tree);
cout<<"数的深度为："<<Depth(tree)<<endl;

}
//算法 5.6 统计二叉树中结点的个数

30

#include<iostream>
using namespace std;

//二叉树的二叉链表存储表示
typedef struct BiNode
{
char data; //结点数据域
struct BiNode *lchild,*rchild; //左右孩子指针
}BiTNode,*BiTree;

//用算法 5.3 建立二叉链表
void CreateBiTree(BiTree &T)
{
//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树 T
char ch;
cin >> ch;
if(ch=='#') T=NULL; //递归结束，建空树
else{
T=new BiTNode;
T->data=ch; //生成根结点
CreateBiTree(T->lchild); //递归创建左子树
CreateBiTree(T->rchild); //递归创建右子树

} //else
} //CreateBiTree

int NodeCount(BiTree T)
{

if(T==NULL) return 0; // 如果是空树，则结点个数为 0，递归结束
else return NodeCount(T->lchild)+ NodeCount(T->rchild) +1;
//否则结点个数为左子树的结点个数+右子树的结点个数+1

}

void main()
{
BiTree tree;
cout<<"请输入建立二叉链表的序列：\n";
CreateBiTree(tree);
cout<<"结点个数为："<<NodeCount(tree)<<endl;

}

31

实验四：图的建立和搜索

预计课时：2学时

实训时长： 90(分钟)

实验简介：使用邻接矩阵或邻接表表示法存储一个图，实现图的

深度优先搜索和广度优先搜索的算法。

实验目标：

1、掌握图的邻接矩阵的存储定义；

2、掌握图的深度优先搜索和广度优先搜索算法的实现。

实验内容：

1、图的邻接矩阵的存储定义;

2、深度优先搜索算法;

3、广度优先搜索算法。

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

//算法 6.3 深度优先搜索遍历连通图的递归算法

#include <iostream>
using namespace std;

#define MVNum 100 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型
typedef int ArcType; //假设边的权值类型为整型

typedef struct{
VerTexType vexs[MVNum]; //顶点表
ArcType arcs[MVNum][MVNum]; //邻接矩阵

32

int vexnum,arcnum; //图的当前点数和边数
}Graph;

bool visited[MVNum]; //访问标志数组，其初值为"false"
int FirstAdjVex(Graph G , int v); //返回 v 的第一个邻接点
int NextAdjVex(Graph G , int v , int w); //返回 v 相对于 w 的下一个邻接点

int LocateVex(Graph G , VerTexType v){
//确定点 v 在 G 中的位置
for(int i = 0; i < G.vexnum; ++i)

if(G.vexs[i] == v)
return i;

return -1;
}//LocateVex

void CreateUDN(Graph &G){
//采用邻接矩阵表示法，创建无向网 G
int i , j , k;
cout <<"请输入总顶点数，总边数 , 以空格隔开:";
cin >> G.vexnum >> G.arcnum; //输入总顶点数，总边数
cout << endl;

cout << "输入点的名称，如 a：" << endl;

for(i = 0; i < G.vexnum; ++i){
cout << "请输入第" << (i+1) << "个点的名称:";
cin >> G.vexs[i]; //依次输入点的信息

}
cout << endl;

for(i = 0; i < G.vexnum; ++i) //初始化邻接矩阵，边的权值
均置为极大值 MaxInt

for(j = 0; j < G.vexnum; ++j)
G.arcs[i][j] = 0;

cout << "输入边依附的顶点，如：a b" << endl;
for(k = 0; k < G.arcnum;++k){ //构造邻接矩阵

VerTexType v1 , v2;
cout << "请输入第" << (k + 1) << "条边依附的顶点:";
cin >> v1 >> v2; //输入一条边依附的顶点及权值
i = LocateVex(G, v1); j = LocateVex(G, v2); //确定 v1 和 v2 在 G 中的位

置，即顶点数组的下标
G.arcs[j][i] = G.arcs[i][j] = 1; //置<v1, v2>的对称边<v2,

v1>的权值为 w
}//for

}//CreateUDN

33

void DFS(Graph G, int v){ //从第 v 个顶点出发递归地深度优先遍历图 G
cout << G.vexs[v] << " "; visited[v] = true; //访问第 v 个顶点，并置

访问标志数组相应分量值为 true
int w;
for(w = FirstAdjVex(G, v); w >= 0; w = NextAdjVex(G, v, w))

//依次检查 v 的所有邻接点 w ，FirstAdjVex(G, v)表示 v 的第一个邻接点
//NextAdjVex(G, v, w)表示 v 相对于 w 的下一个邻接点，w≥0 表示存在邻接

点
if(!visited[w]) DFS(G, w); //对 v 的尚未访问的邻接顶点 w 递归调

用 DFS
}//DFS

int FirstAdjVex(Graph G , int v){
int i;
for(i = 0 ; i < G.vexnum ; ++i){

if(G.arcs[v][i] == 1 && visited[i] == false)
return i;

}
return -1;

}//FirstAdjVex

int NextAdjVex(Graph G , int v , int w){
int i;
for(i = w ; i < G.vexnum ; ++i){

if(G.arcs[v][i] == 1 && visited[i] == false)
return i;

}
return -1;

}//NextAdjVex

int main(){
cout << "************ 算 法 6.3 深 度 优 先 搜 索 遍 历 连 通 图 的 递 归 算 法

**************" << endl << endl;
Graph G;
CreateUDN(G);
cout << endl;
cout << "无向连通图 G 创建完成！" << endl << endl;

cout << "请输入遍历连通图的起始点：";
VerTexType c;
cin >> c;

int i;
for(i = 0 ; i < G.vexnum ; ++i){

if(c == G.vexs[i])
break;

34

}
cout << endl;
while(i >= G.vexnum){

cout << "该点不存在，请重新输入！" << endl;
cout << "请输入遍历连通图的起始点：";
cin >> c;
for(i = 0 ; i < G.vexnum ; ++i){

if(c == G.vexs[i])
break;

}
}
cout << "深度优先搜索遍历连通图结果：" << endl;
DFS(G , i);

cout <<endl;
return 0;

}//main
//算法 6.4 深度优先搜索遍历非连通图

#include <iostream>
using namespace std;

#define MVNum 100 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型
typedef int ArcType; //假设边的权值类型为整型

//-------------图的邻接矩阵-----------------
typedef struct{

VerTexType vexs[MVNum]; //顶点表
ArcType arcs[MVNum][MVNum]; //邻接矩阵
int vexnum,arcnum; //图的当前点数和边数

}Graph;

bool visited[MVNum]; //访问标志数组，其初值为"false"
int FirstAdjVex(Graph G , int v); //返回 v 的第一个邻接点
int NextAdjVex(Graph G , int v , int w); //返回 v 相对于 w 的下一个邻接点

int LocateVex(Graph G , VerTexType v){
//确定点 v 在 G 中的位置
for(int i = 0; i < G.vexnum; ++i)

if(G.vexs[i] == v)
return i;

return -1;
}//LocateVex

void CreateUDN(Graph &G){

35

//采用邻接矩阵表示法，创建无向网 G
int i , j , k;
cout <<"请输入总顶点数，总边数，以空格隔开:";
cin >> G.vexnum >> G.arcnum; //输入总顶点数，总边数
cout << endl;

cout << "输入点的名称，如 a" << endl;
for(i = 0; i < G.vexnum; ++i){

cout << "请输入第" << (i+1) << "个点的名称:";
cin >> G.vexs[i]; //依次输入点的信息

}
cout << endl;
for(i = 0; i < G.vexnum; ++i) //初始化邻接矩阵，

边的权值均置为极大值 MaxInt
for(j = 0; j < G.vexnum; ++j)

G.arcs[i][j] = 0;
cout << "输入边依附的顶点，如 a b" << endl;
for(k = 0; k < G.arcnum;++k){ //构造邻接矩阵

VerTexType v1 , v2;
cout << "请输入第" << (k + 1) << "条边依附的顶点:";
cin >> v1 >> v2; //输入一条边依附的顶点及权值
i = LocateVex(G, v1); j = LocateVex(G, v2); //确定 v1 和 v2 在 G

中的位置，即顶点数组的下标
G.arcs[j][i] = G.arcs[i][j] = 1; //置<v1, v2>的对称边<v2, v1>

的权值为 w
}//for

}//CreateUDN

void DFS(Graph G, int v){
//从第 v 个顶点出发递归地深度优先遍历图 G
cout << G.vexs[v] << " "; visited[v] = true; //访问第 v 个顶点，并置

访问标志数组相应分量值为 true
int w;
for(w = FirstAdjVex(G, v); w >= 0; w = NextAdjVex(G, v, w))

//依次检查 v 的所有邻接点 w ，FirstAdjVex(G, v)表示 v 的第一个邻接点
//NextAdjVex(G, v, w)表示 v 相对于 w 的下一个邻接点，w≥0 表示存在邻接

点
if(!visited[w]) DFS(G, w); //对 v 的尚未访问的邻接顶点 w 递归调

用 DFS
}//DFS

void DFSTraverse(Graph G){
//对非连通图 G 做深度优先遍历
int v;
for(v = 0; v < G.vexnum; ++v) visited[v] = false; //访问标志数组初始化
for(v = 0; v < G.vexnum; ++v) //循环调用算法 6.3

36

if(!visited[v]) DFS(G, v); //对尚未访问的顶点调用 DFS
//算法 6.5 采用邻接矩阵表示图的深度优先搜索遍历

#include <iostream>
using namespace std;

#define MVNum 100 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型
typedef int ArcType; //假设边的权值类型为整型

//------------图的邻接矩阵------------------
typedef struct{

VerTexType vexs[MVNum]; //顶点表
ArcType arcs[MVNum][MVNum]; //邻接矩阵
int vexnum,arcnum; //图的当前点数和边数

}Graph;

bool visited[MVNum]; //访问标志数组，其初值为"false"
int FirstAdjVex(Graph G , int v); //返回 v 的第一个邻接点
int NextAdjVex(Graph G , int v , int w); //返回 v 相对于 w 的下一个邻接点

int LocateVex(Graph G , VerTexType v){
//确定点 v 在 G 中的位置
for(int i = 0; i < G.vexnum; ++i)

if(G.vexs[i] == v)
return i;

return -1;
}//LocateVex

void CreateUDN(Graph &G){
//采用邻接矩阵表示法，创建无向网 G
int i , j , k;
cout <<"请输入总顶点数，总边数，以空格隔开:";
cin >> G.vexnum >> G.arcnum; //输入总顶点数，总边数
cout << endl;

cout << "输入点的名称，如 a" <<endl;

for(i = 0; i < G.vexnum; ++i){
cout << "请输入第" << (i+1) << "个点的名称:";
cin >> G.vexs[i]; //依次输入点的信息

}
cout << endl;

for(i = 0; i < G.vexnum; ++i) //初始化邻接矩阵，边的
权值均置为极大值 MaxInt

37

for(j = 0; j < G.vexnum; ++j)
G.arcs[i][j] = 0;

cout << "输入边依附的顶点，如 a b" << endl;
for(k = 0; k < G.arcnum;++k){ //构造邻接矩阵

VerTexType v1 , v2;
cout << "请输入第" << (k + 1) << "条边依附的顶点:";
cin >> v1 >> v2; //输入一条边依附的顶点及权值
i = LocateVex(G, v1); j = LocateVex(G, v2); //确定 v1 和 v2 在 G 中的

位置，即顶点数组的下标
G.arcs[j][i] = G.arcs[i][j] = 1; //置<v1, v2>的对称边<v2, v1>的权

值为 w
}//for

}//CreateUDN

void DFS(Graph G, int v){
//图 G 为邻接矩阵类型
int w;
cout << G.vexs[v] << " "; visited[v] = true; //访问第 v 个顶点，

并置访问标志数组相应分量值为 true
for(w = 0; w < G.vexnum; w++) //依次检查邻接矩阵 v 所在的行

if((G.arcs[v][w] != 0)&& (!visited[w])) DFS(G, w); //G.arcs[v][w]!=0 表示
w 是 v 的邻接点，如果 w 未访问，则递归调用 DFS
}//DFS

int FirstAdjVex(Graph G , int v){
//返回 v 的第一个邻接点
int i;
for(i = 0 ; i < G.vexnum ; ++i){

if(G.arcs[v][i] == 1 && visited[i] == false)
return i;

}
return -1;

}//FirstAdjVex

int NextAdjVex(Graph G , int v , int w){
//返回 v 相对于 w 的下一个邻接点
int i;
for(i = w ; i < G.vexnum ; ++i){

if(G.arcs[v][i] == 1 && visited[i] == false)
return i;

}
return -1;

}//NextAdjVex

int main(){
cout << "************ 算 法 6.5 采 用 邻 接 矩 阵 表 示 图 的 深 度 优 先 搜 索 遍 历

38

**************" << endl << endl;
Graph G;
CreateUDN(G);
cout << endl;
cout << "无向图 G 创建完成！" << endl << endl;

cout << "请输入遍历无向图 G 的起始点：";
VerTexType c;
cin >> c;

int i;
for(i = 0 ; i < G.vexnum ; ++i){

if(c == G.vexs[i])
break;

}
cout << endl;
while(i >= G.vexnum){

cout << "该点不存在，请重新输入！" << endl;
cout << "请输入遍历连通图的起始点：";
cin >> c;
for(i = 0 ; i < G.vexnum ; ++i){

if(c == G.vexs[i])
break;

}
}
cout << "深度优先搜索遍历无向图 G 结果：" << endl;
DFS(G , i);

cout <<endl;
return 0;

}//main

//算法 6.6 采用邻接表表示图的深度优先搜索遍历

#include <iostream>
using namespace std;

#define MVNum 100 //最大顶点数
typedef char VerTexType; //假设顶点的数据类型为字符型

//-------------图的邻接表---------------------
typedef struct ArcNode{ //边结点

int adjvex; //该边所指向的顶点的位置
struct ArcNode *nextarc; //指向下一条边的指针

}ArcNode;

39

typedef struct VNode{
VerTexType data; //顶点信息
ArcNode *firstarc; //指向第一条依附该顶点的边的指针

}VNode, AdjList[MVNum]; //AdjList 表示邻接表类型

typedef struct{
AdjList vertices; //邻接表
int vexnum, arcnum; //图的当前顶点数和边数

}ALGraph;

bool visited[MVNum]; //访问标志数组，其初值为"false"

int LocateVex(ALGraph G , VerTexType v){
//确定点 v 在 G 中的位置
for(int i = 0; i < G.vexnum; ++i)

if(G.vertices[i].data == v)
return i;

return -1;
}//LocateVex

void CreateUDG(ALGraph &G){
//采用邻接表表示法，创建无向图 G
int i , k;

cout <<"请输入总顶点数，总边数，以空格隔开:";
cin >> G.vexnum >> G.arcnum; //输入总顶点数，总边数
cout << endl;

cout << "输入点的名称，如 a" << endl;

for(i = 0; i < G.vexnum; ++i){ //输入各点，构造表头结点表
cout << "请输入第" << (i+1) << "个点的名称:";
cin >> G.vertices[i].data; //输入顶点值
G.vertices[i].firstarc=NULL; //初始化表头结点的指针域为 NULL

}//for
cout << endl;

cout << "输入边依附的顶点，如 a b" << endl;

for(k = 0; k < G.arcnum;++k){ //输入各边，构造邻接表
VerTexType v1 , v2;
int i , j;
cout << "请输入第" << (k + 1) << "条边依附的顶点:";
cin >> v1 >> v2; //输入一条边依附的两个顶点
i = LocateVex(G, v1); j = LocateVex(G, v2);
//确定 v1 和 v2 在 G 中位置，即顶点在 G.vertices 中的序号

40

ArcNode *p1=new ArcNode; //生成一个新的边结点*p1
p1->adjvex=j; //邻接点序号为 j
p1->nextarc= G.vertices[i].firstarc; G.vertices[i].firstarc=p1;
//将新结点*p1 插入顶点 vi 的边表头部

ArcNode *p2=new ArcNode; //生成另一个对称的新的边结点*p2
p2->adjvex=i; //邻接点序号为 i
p2->nextarc= G.vertices[j].firstarc; G.vertices[j].firstarc=p2;
//将新结点*p2 插入顶点 vj 的边表头部

}//for
}//CreateUDG

void DFS(ALGraph G, int v){ //图 G 为邻接表类型
cout << G.vertices[v].data << " ";
visited[v] = true; //访问第 v 个顶点，并置访问标志数组相应分量值为 true
ArcNode *p = G.vertices[v].firstarc; //p 指向 v 的边链表的第一个边结点
while(p != NULL){ //边结点非空

int w = p->adjvex; //表示 w 是 v 的邻接点
if(!visited[w]) DFS(G, w); //如果 w 未访问，则递归调用 DFS
p = p->nextarc; //p 指向下一个边结点

}
}//DFS

int main(){
cout << "************ 算 法 6.6 采 用 邻 接 表 表 示 图 的 深 度 优 先 搜 索 遍 历

**************" << endl << endl;
ALGraph G;
CreateUDG(G);
cout << endl;
cout << "无向连通图 G 创建完成！" << endl << endl;

cout << "请输入遍历连通图的起始点：";
VerTexType c;
cin >> c;

int i;
for(i = 0 ; i < G.vexnum ; ++i){

if(c == G.vertices[i].data)
break;

}
cout << endl;
while(i >= G.vexnum){

cout << "该点不存在，请重新输入！" << endl;
cout << "请输入遍历连通图的起始点：";
cin >> c;

41

for(i = 0 ; i < G.vexnum ; ++i){
if(c == G.vertices[i].data)

break;
}

}

cout << "深度优先搜索遍历图结果：" << endl;
DFS(G , i);

cout <<endl;
return 0;

}//main

42

实验五：顺序查找和折半查找

预计课时：2学时

实训时长： 90(分钟)

实验简介：对顺序表实现顺序查找和折半查找，比较查找效率。

实验目标：

熟悉顺序查找和折半查找算法，掌握其时间复杂度。

实验内容：

1、顺序查找;

2、折半查找。

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

43

//算法 7.1 顺序查找
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 1;

typedef struct{
int key;//关键字域
}ElemType;

typedef struct{
ElemType *R;
int length;
}SSTable;

int InitList_SSTable(SSTable &L)
{
L.R=new ElemType[MAXSIZE];
if (!L.R)
{
cout<<"初始化错误";
return 0;

}
L.length=0;
return OK;
}

int Insert_SSTable(SSTable &L)
{
int j=0;
for(int i=0;i<MAXSIZE;i++)
{
L.R[i].key=j;
L.length++;
j++;

}
return 1;
}

int Search_Seq(SSTable ST, int key){
//在顺序表 ST 中顺序查找其关键字等于 key 的数据元素。若找到，则函数值

为
//该元素在表中的位置，否则为 0

for (int i=ST.length; i>=1; --i)
if (ST.R[i].key==key) return i; //从后往前找

return 0;

44

}// Search_Seq

void Show_End(int result,int testkey)
{
if(result==0)
cout<<"未找到"<<testkey<<endl;

else
cout<<"找到"<<testkey<<"位置为"<<result<<endl;

return;
}
void main()
{
SSTable ST;
InitList_SSTable(ST);
Insert_SSTable(ST);
int testkey1=7,testkey2=200;
int result;
result=Search_Seq(ST, testkey1);
Show_End(result,testkey1);
result=Search_Seq(ST, testkey2);
Show_End(result,testkey2);
}

//算法 7.2 设置监视哨的顺序查找
#include<iostream>
using namespace std;
#define MAXSIZE 100
#define OK 1;

typedef struct{
int key;//关键字域
}ElemType;

typedef struct{
ElemType *R;
int length;
}SSTable;

int InitList_SSTable(SSTable &L)
{
L.R=new ElemType[MAXSIZE];
if (!L.R)
{
cout<<"初始化错误";
return 0;

}

45

L.length=0;
return OK;
}

int Insert_SSTable(SSTable &L)
{
int j=1;//空出 ST.R[0]的位置
for(int i=1;i<MAXSIZE;i++)
{
L.R[i].key=j;
L.length++;
j++;

}
return 1;
}

int Search_Seq(SSTable ST, int key){
//在顺序表 ST 中顺序查找其关键字等于 key 的数据元素。若找到，则函数值为

//该元素在表中的位置，否则为 0
ST.R[0].key = key; //“哨兵”
for(int i = ST.length; ST.R[i].key!=key; --i) ; //从后往前找
return i;

}// Search_Seq
void Show_End(int result,int testkey)
{
if(result==0)
cout<<"未找到"<<testkey<<endl;

else
cout<<"找到"<<testkey<<"位置为"<<result<<endl;

return;
}
void main()
{
SSTable ST;
InitList_SSTable(ST);
Insert_SSTable(ST);
int testkey1=7,testkey2=200;
int result;
result=Search_Seq(ST, testkey1);
Show_End(result,testkey1);
result=Search_Seq(ST, testkey2);
Show_End(result,testkey2);
}

//算法 7.3 折半查找
#include<iostream>

46

using namespace std;
#define MAXSIZE 100
#define OK 1;

typedef struct{
int key;//关键字域
}ElemType;

typedef struct{
ElemType *R;
int length;
}SSTable;

int InitList_SSTable(SSTable &L)
{
L.R=new ElemType[MAXSIZE];
if (!L.R)
{
cout<<"初始化错误";
return 0;

}
L.length=0;
return OK;
}

int Insert_SSTable(SSTable &L)
{
int j=1;
for(int i=1;i<MAXSIZE;i++)
{
L.R[i].key=j;
L.length++;
j++;

}
return 1;
}

int Search_Bin(SSTable ST,int key) {
// 在有序表 ST 中折半查找其关键字等于 key 的数据元素。若找到，则函数值

为
// 该元素在表中的位置，否则为 0
int low=1,high=ST.length; //置查找区间初值
int mid;
while(low<=high) {
mid=(low+high) / 2;

if (key==ST.R[mid].key) return mid; //找到待查元素

47

else if (key<ST.R[mid].key) high = mid -1; //继续在前一子表进
行查找

else low =mid +1; //继续在后一子
表进行查找

}//while
return 0; //表中不存在待查元素

}// Search_Bin

void Show_End(int result,int testkey)
{
if(result==0)
cout<<"未找到"<<testkey<<endl;

else
cout<<"找到"<<testkey<<"位置为"<<result<<endl;

return;
}

void main()
{
SSTable ST;
InitList_SSTable(ST);
Insert_SSTable(ST);
int testkey1=7,testkey2=200;
int result;
result=Search_Bin(ST, testkey1);
Show_End(result,testkey1);
result=Search_Bin(ST, testkey2);
Show_End(result,testkey2);
}

48

实验六：综合性实验

预计课时：2学时

实训时长： 90(分钟)

实验简介：选取一个合适的数据结构存储数据，能对数据进行插

入、删除，用不同查找算法进行查找、用不同的排序算法进行排序等。

实验目标：

综合运用所学数据结构知识，提高解决实际问题的能力。

实验内容：

设计并实现一个学生管理系统，即定义一个包含学生信息（学号，

姓名，成绩）的顺序表，可以不考虑重名的情况，系统至少包含以下

功能：

1、根据指定学生个数，逐个输入学生信息；

2、逐个显示学生表中所有学生的相关信息；

3、给定一个学生信息，插入到表中指定的位置；

4、删除指定位置的学生记录；

5、统计表中学生个数；

6、利用直接插入排序或者折半插入排序按照姓名进行排序；

7、利用快速排序按照学号进行排序；

8、根据姓名进行折半查找，要求使用递归算法实现，成功返回此

学生的学号和成绩；

9、根据学号进行折半查找，要求使用非递归算法实现，成功返回

此学生的姓名和成绩。

49

实验所需基础：

实验环境：Visual C++

实验是否需要联网：否

实训步骤：

#include <iostream>
#include <stdio.h>
#include <cstring>
#include <cmath>
#include <cstdlib>
using namespace std;
#define MAXSIZE 100//假设的表的最大长度;
typedef struct{

int no; //8位学号
char name[20]; //姓名
int price; //成绩

}Student,ElemType;
typedef struct {

Student *elem=NULL; //指向数据元素的基地址
int length; //线性表的当前长度

}SqList;

SqList L;//声明一个数据表

void InitList()
{//构造一个空的顺序表

L.elem=new ElemType[MAXSIZE];
if(!L.elem) exit(0);//存储分配失败退出
L.length=0;

}
int menu_select()//选择菜单函数
{

char s[3];
int c;
printf("\n ***************主菜单**************\n");
printf(" * 1. 录入新记录 *\n");
printf(" * 2. 浏览显示所有记录 *\n");
printf(" * 3. 插入记录 *\n");
printf(" * 4. 删除记录 *\n");
printf(" * 5. 统计记录 *\n");
printf(" * 6. 按姓名顺序显示所有记录 *\n");

50

printf(" * 7. 按学号顺序显示所有记录 *\n");
printf(" * 8. 通过姓名查找记录 *\n");
printf(" * 9. 通过学号查找记录 *\n");
printf(" * 10. 退出 *\n");
printf(" ***********************************\n\n");

do
{

printf(" 请选择操作(1-10):");
scanf("%s",s);
c=atoi(s);

}while(c<0||c>10); /*选择项不在~10之间重输*/
return(c); /*返回选择项，主程序根据该数调用相应的函数*/

}
/*数据表取值*/
void Create()
{//新建学生数据

int n;
cout<<"根据指定学生个数，逐个输入学生信息:"<<endl;
cout<<"学生个数 n=";
cin>>n;
if(n<1||L.length+n>MAXSIZE){

cout<<"创建失败"<<endl;
return ;

}
for(int i=0;i<n;i++)//逐个添加数据
{

L.length++;//每添加一个,则更新一次长度。
cout<<"第"<<i+1<<"个学生数据"<<endl<<"姓名:";
cin>>L.elem[L.length].name;
cout<<"学号:";
cin>>L.elem[L.length].no;
cout<<"成绩:";
cin>>L.elem[L.length].price;

}
cout<<"***操作成功***"<<endl;

}
void ShowAllDate()
{

if(L.length<1)
{

cout<<endl<<" 很遗憾，空表中没有任何记录可供显示!"<<endl;
return ;

}
cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;

51

cout<<"---------------------------------"<<endl;
for(int i=1;i<=L.length;i++)
{

cout<<" "<<i<<" "<<L.elem[i].name<<"
"<<L.elem[i].no<<" "<<L.elem[i].price<<endl;

}
cout<<"*********************************"<<endl;
cout<<"***操作成功***"<<endl;

}
/*插入数据*/
bool InsertByID()
{//在顺序表 L 中第 i 个位置插入新的元素 e,i 值的合法范围三1<=i<=L.length+1

int i;
ElemType e;
cout<<"给定一个学生信息，插入到表中指定的位置"<<endl;
ShowAllDate();
cout<<"请输入插入的位置:";
cin>>i;
if((i<1)||(i>L.length+1)){cout<<"位置不合法"; return false;}//i 值不合法
if(L.length==MAXSIZE) {cout<<"存储空间已满";return false;}//存储空间已满
cout<<"请输入插入的数据:"<<endl;
cout<<"姓名:";
cin>>e.name;
cout<<"学号:";
cin>>e.no;
cout<<"成绩:";
cin>>e.price;
for(int j=L.length;j>=i;j--){

L.elem[j+1]=L.elem[j];
}
L.elem[i]=e;
++L.length;//更新记录数
cout<<"***操作成功***"<<endl;
return true;

}
bool DeleteByID()
{//在顺序表 L 中删除第 i 个元素,i 值的合法范围三1<=i<=L.length

int i;
cout<<"删除指定位置的学生记录"<<endl;
cout<<"位置 i=";
cin>>i;
if((i<1)||(i>L.length)){

cout<<"位置不合法";
return false;

}
for(int j=i;j<=L.length-1;j++){

52

L.elem[j]=L.elem[j+1];
}
--L.length;
cout<<"***操作成功***"<<endl;
return true;

}
/*利用直接插入排序或者折半插入排序按照姓名进行排序；*/
int flag=0;//2表示数据已经更新为姓名排序方案

void InsertSort(ElemType *a);
void BInsertSort(ElemType *a);
//姓名排序操作函数
void SelectSort()
{

if(L.length<1){
cout<<endl<<" 很遗憾，空表中没有任何记录可供显示!"<<endl;
return ;

}
cout<<"在按姓名排序之前请先选择排序方法:1.直接插入排序 2.折半插入排序

"<<endl;
cout<<"请选择序号1-2(默认选择1):";
int n;
cin>>n;
cout<<"请确认记录是否按排序方式保存：1.直接显示排序记录 2.保存排序方案并

显示记录"<<endl;
cout<<"请选择序号1-2(默认选择1):";
cin>>flag;
if(flag!=2){//按姓名排序方式直接显示记录

ElemType a[MAXSIZE];//排序专用临时数组
//把数据拷贝至排序数组中
for(int i=1;i<=L.length;i++) a[i]=L.elem[i];
if(n==2)

BInsertSort(a);
else

InsertSort(a);
//因为默认选择序号1，用户只能操作一次选择，选择错误即默认选择序号1
cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
for(int i=1;i<=L.length;i++)
{

cout<<" "<<i<<" "<<a[i].name<<" "<<a[i].no<<"
"<<a[i].price<<endl;

}
cout<<"*********************************"<<endl;
cout<<"***操作成功***"<<endl;

53

flag=1;//防止用户输入非1非2数值
}else{//按姓名排序方式改变记录排序方案并显示记录

if(n==2)
BInsertSort(L.elem);

else
InsertSort(L.elem);

//因为默认选择序号1，用户只能操作一次选择，选择错误即默认选择序号1
cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
for(int i=1;i<=L.length;i++)
{

cout<<" "<<i<<" "<<L.elem[i].name<<"
"<<L.elem[i].no<<" "<<L.elem[i].price<<endl;

}
cout<<"*********************************"<<endl;
cout<<"***操作成功***"<<endl;

}
}
//此处为直接插入排序。对姓名排序
void InsertSort(ElemType a[])
{

for(int i=2;i<=L.length;i++)
if(strcmp(a[i].name,a[i-1].name)<0)
{

a[0]=a[i];
a[i]=a[i-1];
int j;
for(j=i-2;strcmp(a[0].name,a[j].name)<0;j--)

a[j+1]=a[j];
a[j+1]=a[0];

}
}
//此处为折半插入排序。对姓名排序
void BInsertSort(ElemType a[])
{

for(int i=2;i<=L.length;i++)
{

a[0]=a[i];
int low=1,high=i-1;
while(low<=high)
{

int m=(low+high)/2;
if(strcmp(a[0].name,a[m].name)<0) high=m-1;
else low=m+1;

}

54

for(int j=i-1;j>=high+1;--j) a[j+1]=a[j];
a[high+1]=a[0];

}
}
/*利用快速排序按照学号进行排序*/
int Partition(ElemType a[],int low,int high)
{//对顺序表 a 中 low..high 进行一趟排序，返回枢轴位置

a[0]=a[low];
int pivotkey=a[low].no;
while(low<high)
{

while(low<high &&a[high].no>=pivotkey) --high;
a[low]=a[high];
while(low<high&&a[low].no<=pivotkey) ++low;
a[high]=a[low];

}
a[low]=a[0];
return low;

}
//快速排序，对学号进行排序
void QSort(ElemType a[],int low,int high)
{//调用前置初值:low=1;high=L.length;
//对顺序表 a 中子序列 low..high 做快速排序

if(low<high){
int pivotloc=Partition(a,low,high);
QSort(a,low,pivotloc-1);
QSort(a,pivotloc+1,high);

}
}
//学号排序操作函数
void QuickSort()
{

if(L.length<1){
cout<<endl<<" 很遗憾，空表中没有任何记录可供显示!"<<endl;
return ;

}
cout<<"请确认记录是否按排序方式保存：1.直接显示排序记录 2.保存排序方案并

显示记录"<<endl;
cout<<"请选择序号1-2(默认选择1):";
cin>>flag;
//把数据拷贝至排序数组中
if(flag!=2){//不改变原数据情况下排序并输出结果

ElemType a[MAXSIZE];//排序专用临时数组
for(int i=1;i<=L.length;i++) a[i]=L.elem[i];
//因为默认选择序号1，用户只能操作一次选择，选择错误即默认选择序号1
QSort(a,1,L.length);

55

cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
for(int i=1;i<=L.length;i++)
{

cout<<" "<<i<<" "<<a[i].name<<" "<<a[i].no<<"
"<<a[i].price<<endl;

}
cout<<"*********************************"<<endl;
cout<<"***操作成功***"<<endl;
flag=1;

}else{
QSort(L.elem,1,L.length);
cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
for(int i=1;i<=L.length;i++)
{

cout<<" "<<i<<" "<<L.elem[i].name<<"
"<<L.elem[i].no<<" "<<L.elem[i].price<<endl;

}
cout<<"*********************************"<<endl;
cout<<"***操作成功***"<<endl;
flag=3;//在程序内部，2是代表姓名排序后的数据，3代表学号排序结果

}
}
/*根据姓名进行折半查找，要求使用递归算法实现，成功返回此学生的学号和成绩；*/
//折半查找,递归方法
int Search_Bin(ElemType a[],char *key,int low,int high)
{

if(low>high)
return 0;

else{
int mid=(low+high)/2;
if(strcmp(key,a[mid].name)==0) return mid;
else if(strcmp(key,a[mid].name)<0) Search_Bin(a,key,low,mid-1);
else Search_Bin(a,key,mid+1,high);

}
}
//折半查找操作函数
void BinSearchByName()
{

if(L.length<1){
cout<<endl<<" 很遗憾，空表中没有任何记录可供显示!"<<endl;
return ;

}

56

char s[20];
cout<<"根据姓名进行查找，返回此学生的学号和成绩"<<endl;
cout<<"请输入学生姓名:";
cin>>s;
if(flag!=2){

cout<<"检测到您还未对数据库数据进行姓名排序。";
cout<<"现在有两种方案：1.不改变原数据情况下查找 2.给原数据按姓名排序

后再查找"<<endl;
cout<<"请选择序号1-2(默认选择1):";
cin>>flag;
if(flag!=2)//等于直接跳出
{//不改变原数据情况下查找

ElemType a[MAXSIZE];//排序专用临时数组
for(int i=1;i<=L.length;i++) a[i]=L.elem[i];
//因为默认选择序号1，用户只能操作一次选择，选择错误即默认选择序

号1
BInsertSort(a);
int pos=Search_Bin(a,s,1,L.length);
if(pos){//查找到数据后

cout<<"************ STUDENT ************"<<endl;
cout<<" 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
cout<<" "<<a[pos].name<<" "<<a[pos].no<<"

"<<a[pos].price<<endl;
cout<<"*********************************"<<endl;

}else{
cout<<"没有查找到姓名："<<s<<"的记录";

}
flag=1;

}else{
BInsertSort(L.elem);

}
}
if(flag==2){

int pos=Search_Bin(L.elem,s,1,L.length);
if(pos){//查找到数据后

cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
cout<<" "<<pos<<" "<<L.elem[pos].name<<"

"<<L.elem[pos].no<<" "<<L.elem[pos].price<<endl;
cout<<"*********************************"<<endl;

}else{
cout<<"没有查找到姓名："<<s<<"的记录";

}
}

57

}
/*根据学号进行折半查找，要求使用非递归算法实现，成功返回此学生的姓名和成绩。
*/
//折半查找,非递归方法
int Non_Search_Bin(ElemType a[],int key)
{

int low=1,high=L.length;
while(low<=high)
{

int mid=(low+high)/2;
if(key==a[mid].no) return mid;
else if(key<a[mid].no) high=mid-1;
else low=mid+1;

}
return 0;

}
void BinSearchByID()
{

if(L.length<1){
cout<<endl<<" 很遗憾，空表中没有任何记录可供显示!"<<endl;
return ;

}
int s;
cout<<"根据学号进行查找，返回此学生的姓名和成绩"<<endl;
cout<<"请输入学生学号:";
cin>>s;
if(flag!=3){

cout<<"检测到您还未对数据库数据进行学号排序。";
cout<<"现在有两种方案：1.不改变原数据情况下查找 2.给原数据按学号排序

后再查找"<<endl;
cout<<"请选择序号1-2(默认选择1):";
cin>>flag;
if(flag!=2)//等于时直接跳出
{//不改变原数据情况下查找

ElemType a[MAXSIZE];//排序专用临时数组
for(int i=1;i<=L.length;i++) a[i]=L.elem[i];

//因为默认选择序号1，用户只能操作一次选择，选择错误即默认选择序号1
QSort(a,1,L.length);
int pos=Non_Search_Bin(a,s);
if(pos){//查找到数据后

cout<<"************ STUDENT ************"<<endl;
cout<<" 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
cout<<" "<<a[pos].name<<" "<<a[pos].no<<"

"<<a[pos].price<<endl;
cout<<"*********************************"<<endl;

58

}else{
cout<<"没有查找到姓名："<<s<<"的记录";

}
flag=1;

}else{
QSort(L.elem,1,L.length);
flag=3;

}
}
if(flag==3){

int pos=Non_Search_Bin(L.elem,s);
if(pos){//查找到数据后

cout<<"************ STUDENT ************"<<endl;
cout<<" 编号 姓名 学号 成绩"<<endl;
cout<<"---------------------------------"<<endl;
cout<<" "<<pos<<" "<<L.elem[pos].name<<"

"<<L.elem[pos].no<<" "<<L.elem[pos].price<<endl;
cout<<"*********************************"<<endl;

}else{
cout<<"没有查找到姓名："<<s<<"的记录";

}
}

}
int main()
{

system("color 3e"); /*清屏*/
InitList();
for(;;) /*无限循环*/
{

switch(menu_select()) /*调用主菜单函数，返回值整数作开
关语句的条件*/

{
case 1: Create();break; //新建记录
case 2: ShowAllDate();break; //显示全部记录
case 3: InsertByID();break; //插入记录
case 4: DeleteByID();break; //通过 ID 删除记录
case 5: cout<<"当前存档学生个数为:"<<L.length;break; //显示表

中学生个数
case 6: SelectSort();break;//利用直接插入排序或者折半插入排序按照

姓名进行排序；
case 7: QuickSort();break;//利用快速排序按照学号进行排序；
case 8: BinSearchByName();break;//根据姓名进行折半查找，要求使用

递归算法实现，成功返回此学生的学号和成绩；
case 9: BinSearchByID();break;//根据学号进行折半查找，要求使用非递

归算法实现，成功返回此学生的姓名和成绩。
case 10: exit(0); //程序结束*/

59

}
}
return 0;

}

	一、课程基本信息
	二、课程简介
	三、考核说明或要求
	四、实验名称：
	实验一：单链表的基本操作
	实验二：栈和队列的应用
	实验三：二叉树的基本算法
	//算法5.3 先序遍历的的顺序建立二叉链表
	#include<iostream>
	using namespace std;
	//二叉树的二叉链表存储表示
	typedef struct BiNode
	{
	char data;//结点数据域
	struct BiNode *lchild,*rchild;//左右孩子指针
	}BiTNode,*BiTree;
	void CreateBiTree(BiTree &T)
	{
	//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树T
	char ch;
	cin >> ch;
	if(ch=='#') T=NULL;//递归结束，建空树
	else{
	T=new BiTNode;
	T->data=ch;//生成根结点
	CreateBiTree(T->lchild);//递归创建左子树
	CreateBiTree(T->rchild);//递归创建右子树
	}//else
	}//CreateBiTree
	//用算法5.1 中序遍历的递归算法
	void InOrderTraverse(BiTree T)
	{
	//中序遍历二叉树T的递归算法
	if(T){
	InOrderTraverse(T->lchild);
	cout << T->data;
	InOrderTraverse(T->rchild);
	}
	}
	void main()
	{
	BiTree tree;
	cout<<"请输入建立二叉链表的序列：\n";
	CreateBiTree(tree);
	cout<<"所建立的二叉链表中序序列：\n";
	InOrderTraverse(tree);
	cout<<endl;
	}
	//算法5.5 计算二叉树的深度
	#include<iostream>
	using namespace std;
	//二叉树的二叉链表存储表示
	typedef struct BiNode
	{
	char data;//结点数据域
	struct BiNode *lchild,*rchild;//左右孩子指针
	}BiTNode,*BiTree;
	//用算法5.3建立二叉链表
	void CreateBiTree(BiTree &T)
	{
	//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树T
	char ch;
	cin >> ch;
	if(ch=='#') T=NULL;//递归结束，建空树
	else{
	T=new BiTNode;
	T->data=ch;//生成根结点
	CreateBiTree(T->lchild);//递归创建左子树
	CreateBiTree(T->rchild);//递归创建右子树
	}//else
	}//CreateBiTree
	int Depth(BiTree T)
	{
	int m,n;
	if(T == NULL) return 0; //如果是空树，深度为0，递归结束
	else
	{
	m=Depth(T->lchild);//递归计算左子树的深度记为m
	n=Depth(T->rchild);//递归计算右子树的深度记为n
	if(m>n) return(m+1);//二叉树的深度为m 与n的较大者加1
	else return (n+1);
	}
	}
	void main()
	{
	BiTree tree;
	cout<<"请输入建立二叉链表的序列：\n";
	CreateBiTree(tree);
	cout<<"数的深度为："<<Depth(tree)<<endl;
	}
	//算法5.6 统计二叉树中结点的个数
	#include<iostream>
	using namespace std;
	//二叉树的二叉链表存储表示
	typedef struct BiNode
	{
	char data;//结点数据域
	struct BiNode *lchild,*rchild;//左右孩子指针
	}BiTNode,*BiTree;
	//用算法5.3建立二叉链表
	void CreateBiTree(BiTree &T)
	{
	//按先序次序输入二叉树中结点的值（一个字符），创建二叉链表表示的二叉树T
	char ch;
	cin >> ch;
	if(ch=='#') T=NULL;//递归结束，建空树
	else{
	T=new BiTNode;
	T->data=ch;//生成根结点
	CreateBiTree(T->lchild);//递归创建左子树
	CreateBiTree(T->rchild);//递归创建右子树
	}//else
	}//CreateBiTree
	int NodeCount(BiTree T)
	{
	 if(T==NULL) return 0; // 如果是空树，则结点个数为0，递归结束
	 else return NodeCount(T->lchild)+ NodeCount(T
	 //否则结点个数为左子树的结点个数+右子树的结点个数+1
	}
	void main()
	{
	BiTree tree;
	cout<<"请输入建立二叉链表的序列：\n";
	CreateBiTree(tree);
	cout<<"结点个数为："<<NodeCount(tree)<<endl;
	}
	实验四：图的建立和搜索
	实验五：顺序查找和折半查找
	//算法7.1　顺序查找
	#include<iostream>
	using namespace std;
	#define MAXSIZE 100
	#define OK 1;
	typedef struct{
	int key;//关键字域
	}ElemType;
	typedef struct{
	ElemType *R;
	int length;
	}SSTable;
	int InitList_SSTable(SSTable &L)
	{
	L.R=new ElemType[MAXSIZE];
	if (!L.R)
	{
	cout<<"初始化错误";
	return 0;
	}
	L.length=0;
	return OK;
	}
	int Insert_SSTable(SSTable &L)
	{
	int j=0;
	for(int i=0;i<MAXSIZE;i++)
	{
	L.R[i].key=j;
	L.length++;
	j++;
	}
	return 1;
	}
	int Search_Seq(SSTable ST, int key){
	 //在顺序表ST中顺序查找其关键字等于key的数据元素。若找到，则函数值为
	 //该元素在表中的位置，否则为0
	 for (int i=ST.length; i>=1; --i)
	 if (ST.R[i].key==key) return i;//从后
	 return 0;
	 }// Search_Seq
	void Show_End(int result,int testkey)
	{
	if(result==0)
	cout<<"未找到"<<testkey<<endl;
	else
	cout<<"找到"<<testkey<<"位置为"<<result<<endl;
	return;
	}
	void main()
	{
	SSTable ST;
	InitList_SSTable(ST);
	Insert_SSTable(ST);
	int testkey1=7,testkey2=200;
	int result;
	result=Search_Seq(ST, testkey1);
	Show_End(result,testkey1);
	result=Search_Seq(ST, testkey2);
	Show_End(result,testkey2);
	}
	//算法7.2　设置监视哨的顺序查找
	#include<iostream>
	using namespace std;
	#define MAXSIZE 100
	#define OK 1;
	typedef struct{
	int key;//关键字域
	}ElemType;
	typedef struct{
	ElemType *R;
	int length;
	}SSTable;
	int InitList_SSTable(SSTable &L)
	{
	L.R=new ElemType[MAXSIZE];
	if (!L.R)
	{
	cout<<"初始化错误";
	return 0;
	}
	L.length=0;
	return OK;
	}
	int Insert_SSTable(SSTable &L)
	{
	int j=1;//空出ST.R[0]的位置
	for(int i=1;i<MAXSIZE;i++)
	{
	L.R[i].key=j;
	L.length++;
	j++;
	}
	return 1;
	}
	int Search_Seq(SSTable ST, int key){
	 //在顺序表ST中顺序查找其关键字等于key的数据元素。若找到，则函数值为
	 //该元素在表中的位置，否则为0
	 ST.R[0].key = key;
	 for(int i = ST.length; ST.R[i].key!=key; --i)
	 return i;
	}// Search_Seq
	void Show_End(int result,int testkey)
	{
	if(result==0)
	cout<<"未找到"<<testkey<<endl;
	else
	cout<<"找到"<<testkey<<"位置为"<<result<<endl;
	return;
	}
	void main()
	{
	SSTable ST;
	InitList_SSTable(ST);
	Insert_SSTable(ST);
	int testkey1=7,testkey2=200;
	int result;
	result=Search_Seq(ST, testkey1);
	Show_End(result,testkey1);
	result=Search_Seq(ST, testkey2);
	Show_End(result,testkey2);
	}
	//算法7.3　折半查找
	#include<iostream>
	using namespace std;
	#define MAXSIZE 100
	#define OK 1;
	typedef struct{
	int key;//关键字域
	}ElemType;
	typedef struct{
	ElemType *R;
	int length;
	}SSTable;
	int InitList_SSTable(SSTable &L)
	{
	L.R=new ElemType[MAXSIZE];
	if (!L.R)
	{
	cout<<"初始化错误";
	return 0;
	}
	L.length=0;
	return OK;
	}
	int Insert_SSTable(SSTable &L)
	{
	int j=1;
	for(int i=1;i<MAXSIZE;i++)
	{
	L.R[i].key=j;
	L.length++;
	j++;
	}
	return 1;
	}
	int Search_Bin(SSTable ST,int key) {
	 // 在有序表ST中折半查找其关键字等于key的数据元素。若找到，则函数值为
	 // 该元素在表中的位置，否则为0
	 int low=1,high=ST.length;//置查找区间初值
	 int mid;
	 while(low<=high) {
	 mid=(low+high) / 2;
	 if (key==ST.R[mid].key) return mid;
	 else if (key<ST.R[mid].key) high = mid -1;
	 else low =mid +1;
	 }//while
	 return 0;//表中不存在待查元素
	}// Search_Bin
	void Show_End(int result,int testkey)
	{
	if(result==0)
	cout<<"未找到"<<testkey<<endl;
	else
	cout<<"找到"<<testkey<<"位置为"<<result<<endl;
	return;
	}
	void main()
	{
	SSTable ST;
	InitList_SSTable(ST);
	Insert_SSTable(ST);
	int testkey1=7,testkey2=200;
	int result;
	result=Search_Bin(ST, testkey1);
	Show_End(result,testkey1);
	result=Search_Bin(ST, testkey2);
	Show_End(result,testkey2);
	}
	实验六：综合性实验

